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1 INTRODUCTION 

1.1 Background 

With the advent of extremely sophisticated computer/communication networks, 

a tactical organization such as a military organization has enormous amounts of 

information to be transferred. In addition, the development of weapon systems de­

mands quick reacting capabilities. Therefore, the time allowed for decision-making 

in a tactical environment is severely constrained. Consequently, the capability of 

such an organization to perform its tasks, such as information transition, in a timely 

manner without overloading components, manpower, or machines of organization 

is indeed a determinant factor of organization effectiveness. 

The technological advance in sensors and weapon systems have primarily driven 

the trend toward decentralization of the command and control (C^) tactical decision 

making function and the geographical distribution of the warfare commanders for 

reasons of survivability, together with the need to share data over a wide variety of 

physical locations. On the other hand, the sheer volume of information may render 

it unusable without regard to the problems of interpretation imposed by delay and 

distortion.^ Therefore, it is crucial that the military organization be structured in 

^The accident of Iranian A-300 Air-bus hit by Vincennes at July 3, 1988 is given 
as a typical example of the distortion of information [36]. 



www.manaraa.com

2 

such a way as they can process eflR.ciently only the information that contributes to its 

overall organization objectives. Wilson [76] discussed some of the techniques needed 

to process information. Stabile and Levis [64] found that partitioning the input to 

a single-echelon organization, such that each member receives only the information 

that he/she is particularly well-suited to process, may improve the performance of 

the organization. This is a need for a study of how the military should distribute 

information in the process. 

This type of study is fairly tractable in the context of a military organization 

for several reasons. First, the organizational objectives are well-defined. Second, 

the tasks which must be accomplished in order to achieve this objective become 

well-defined as soon as the commander exercises his authority and direction. Third, 

in spite of its size and complexity, a military organization has many elements which 

perform basically identical functions, although possibly at different rates [7]. This 

fact makes it easier to design a system structure and also model information flows 

of that organization. 

Efficient use of resources is another issue of a military organization. It requires 

that each of the components operate concurrently with other components and co­

ordinate their activities when necessary. Also, it requires this coordination to occur 

asynchronously, and not at set times. Finally, the activities that each component 

must perform can be quite complicated and affected by many factors. Therefore, 

the time it takes for a component to complete a task, which will be denoted later 

as processing time, is usually stochastic. 

Wiley [75] denoted systems that are composed of components working con­

currently, coordinating their activities asynchronously, and with random processing 
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times as Stochastic Asynchronous Concurrent (SAC) systems. One way to analyze 

an SAC system is to predict its performance with respect to time-related measures 

such as average processing rate. With these measures, different designs can be 

compared or existing designs modified, and their improvement or degradation in 

performance evaluation assessed. 

Several tools currently available to analyze SAC systems are either expensive, 

rudimentary, or non-existent. One popularly used technique is simulation, which 

allows the use of relatively accurate models. Moreover, methods exist to obtain 

certain sensitivity measures from simulation runs [35]. Despite this, cost and time 

required to build models are enormous, and extremely long runs are required to 

assure that the simulation is in a steady-state and that the results are statistically 

significant. Furthermore, if the system is substantially changed, then the model 

must be changed and another simulation run performed at an additional expense 

and effort. 

Another tool that has been used to study SAC systems is queueing theory 

[9]. However, modeling the coordination of asynchronous tasks is not easy to fit 

naturally into the theory of queues and must be imposed artificially by the system 

analyst. Moreover, queueing theory itself cannot present the characteristics of the 

SAC system if the system has the hierarchical structure. 

A third tool that has been used to analyze SAC systems is Markov chains [49, 

58]. However, Markov chains are very limited in the size of problems they can 

handle since modeling even a SAC system with Markov chains is very difficult and 

requires an extremely large number of states.^ 

^For instance, if the number of nodes of a system is n, then the maximum number 
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Meanwhile, several methods have been used to present the relationship between 

system components such as hierarchical relationship, operating characteristics, etc. 

One of the most popular methods is the block diagram. It presents mainly the 

hierarchical and/or operational relationships. Therefore, it is useful to understand 

the overall operations and characteristics of the system, but it neither presents the 

sequence of tasks assigned to each components, nor presents time-related factors 

such as task processing times of system components. 

Another popular method is the flow diagram, which is widely used in computing 

areas to present the logical relationship between the system components. The merit 

of this method is that it can present the execution schedule of tasks. However, like 

the block diagram, it cannot present time-related factors. 

The third method is the process chart. It is mainly used in manufacturing 

areas to present the execution schedule of component tasks. This method may 

also present the hierarchical structure of the system, but it cannot present time 

relationships between tasks followed according to continuous task execution. 

The fourth method. Timed Petri Net (TPN)^ can naturally represent the con­

currency of different activities, asynchronous coordination, and deterministic or 

random processing time. Also, this method can present all structural and oper­

ational relationships. Therefore, it can show even very sophisticated relations of 

components which are not possible to present with the other methods introduced 

above. With this advantage, many researchers have modeled SAC systems using 

of states needed to represent the system behavior is 2". 
®A TPN can be classified according to properties of time measure, i.e., if deter­

ministic time is appHed, then the TPN is called Deterministic TPN (DTPN) and if 
time is probabilistic, then the net is called Stochastic TPN (STPN). 
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some version of Petri Nets or original Petri Nets. Most of these models deal with 

either communication protocol [17, 51, 58] or computer systems [12, 29, 43, 56]. 

Petri Nets has also been used to model production systems [8, 18, 27] and organi­

zation of decision-makers in Bejjani [5], Boettcher [6], Levis [41], Stabile and Levis 

[64], Tabak and Levis [67], and Wiley [75]. 

1.2 Objectives 

Today's advanced electronic technology, especially computer technology, is in­

creasing the possibility of receiving intelligence directly from sensors, to control 

when and what weapons to launch against the enemy. Because of this, the com­

mander's role is gradually confined to the strategic deployment of resources. How­

ever, those situations where the speed of events is beyond human management will 

not be realized in the near future, although the development of those techniques 

support the decision-makers in managing battles; hence, the speed of events is 

faster than before. In other words, the decision-makers are essential components of 

such a tactical organization. Despite this fact, the present military organizations 

need a model for a command and control system [5] because of following reasons: 

(1) existing command systems are primarily concerned with target acquisition and 

tracking, and weapon direction and control. They do not offer much assistance in 

higher-level decision processes such as planning. An evolutionary approach to the 

design of command aids, involving the adaption and refinement of existing systems, 

is therefore inappropriate; (2) a lack of scientific understanding of the functions car­

ried out within a command system frustrates progress with the design; (3) doctrines 

needed in performing missions exist, but no understanding for the officer in tactical 
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command nor for his subordinates to perform their command tasks; and (4) lack of 

knowledge for plan formulation and how a mission should be monitored. 

Moreover, despite abundant research in this area, there is no adequate foun­

dation for a theory of command and control, and hence, no guiding principles for 

system design and evaluation [73]. 

Therefore, in this thesis, a generic system will be set up and modeled by 

using Stochastic Timed Petri Net formalism. Then, a generalized technique for the 

evaluation of system effectiveness will be analyzed by the following ways. 

First, as mentioned previously, a system has common elements which per­

form identical missions. Thus, it might be possible to find a functional model of the 

process which is generally appUcable and can describe the processes taking place 

in any command and control subsystem within the overall command system. If all 

such subsystems are considered as instances of such a general functional model, then 

any particular command organization can be represented by the interconnection of 

a separate process to represent a subsystem with a declared responsibility within 

this structure. 

Second, in order to analyze the system. Stochastic Timed Place Petri Net 

(STPPN)"^ formalism will be applied, because this system can be regarded as a 

SAC system. Problems for predicting system states and measures of effectiveness 

(MOEs) will be used in evaluating this system. To resolve these system state 

problems, conversion of the system to an STPPN will be performed.^ Then, to 

'^STPNs can be categorized as Stochastic Timed Place Petri Nets (STPPNs) and 
Stochastic Timed Transition Petri Nets (STTPNs), according to locations placed 
time measure, places, or transitions, respectively. Thus, their evolution processes 
are not equivalent. 

® A system is a type of decision-making process and thus, the resulting STPPN 
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obtain MOEs for the performance evaluation of the underlying system, simulation 

techniques will be applied to the STPPN. As a result of simulation to the net, 

the following measures can be obtained: (1) the average cycle processing time to 

perform a system task; (2) the maximum average processing time to perform a 

process; and (3) the dynamic response time. 

Finally, a good system must be able to cope with shocks generated by the 

environment. Hence, in this thesis, dynamic behavior of the system, such as how 

the system structure is changed and how the additional tasks (or burden) due to 

shocks are assigned to the changed structure when shocks happen, will be discussed. 

1.3 Literature Review 

1.3.1 Timed Petri Nets 

Several studies for Timed Petri Nets have been done so far. All of these works 

are extensions of the original Petri Nets. ® 

This literature review is divided into two sections according to the type of 

processing times that the algorithms in the cited articles can handle: deterministic 

or random. 

The first study on Timed Petri Nets was represented by Ramchandani [57], 

who associated deterministic processing times with transitions and obtained exact 

transition firing rates for Decision-Free Timed Petri Nets,^ but only approximate 

model may be used for any decision-making process. 
^There are several introductory articles and texts to original Petri Nets. The 

most comprehensive one is Petri Net Theory and the Modeling of Systems by J.L., 
Peterson [55]. Other include Agerwala [1], Genrich et al. [23], Genrich and 
Stankiewicz-Wiechno [24], and Reisig [59]. 

'Decision-Free Timed Petri Nets are a subclass of STPNs which transitions are 
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bounds on the transition firing rates for more general Timed Petri Nets. His work 

was slightly generalized by Sifakis [62], who associated deterministic processing 

times and essentially obtained the same results as Ramchandani, but who handled 

more general Petri Nets with multiple arcs between nodes. Sifakis [61] showed the 

distinction between associating processing times with transitions or with places was 

not important since one type of Timed Petri Net can be converted into the other. 

However, it is effective for the case of the deterministic processing time, not for the 

random processing time. Ramamoothy and Ho [56] showed how to obtain the same 

results given by Sifakis and Ramchandani. Cohen et al. [13] showed that Decision-

Free Timed Petri Nets with deterministic processing times can be analyzed using 

(max, +) algebra results. Finally, Merlin and Farber [47] discussed TPNs where 

a time threshold and maximum delay were assigned to each transition. This was 

done to allow the incorporation of timeout into a protocol model. 

Some of the works discussed above can be extended to analyze Timed Petri 

Nets with random processing times by replacing these times by their expected val­

ues. However, the results obtained in this way provide only very loose approxi­

mations of the average firing rates. Several researchers have tried to remedy this 

situation by converting the Timed Petri Net into an equivalent Markov chain and 

then analyzing the resulting Markov chain. Zuberek [78] was the first to perform 

this transformation and was able to analyze STPNs which only allow very simple 

decision rules based on independent probabilities. Razouk and Phelps [58] extended 

Zuberek's work to STPNs that can model time-outs situations where the completion 

of one activity may disable others, and also slightly more complex decision situa-

never in conflict. Therefore, no decision rule is needed. 
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tions. The decision rules are still based on independent probabilities. Both of these 

articles, however, fail to show that the resulting Markov chain has a well-defined 

steady state probability distribution, and their procedures are applicable to only 

very small problems. 

Molloy [49] solved somewhat larger problems® by associating exponential proc­

essing times with transitions and by specifying a decision rule which stated that 

the transition whose processing time terminates first would fire. Marson et al. [43] 

extended Molloy's results to manage transitions with zero processing times. 

As indicated before, the main weakness of all works mentioned above is that 

they need to construct an equivalent Markov chain modeling the evolution of the 

marking of the net to find the performance measures of interest. 

Zuberek [78], and Jantzen and Valk [38] dealt with decision-conflict situations 

by introducing inhibitor arcs to the original Petri Net formalism (see Figure 1.1). 

Their works were based on the assumption that the underlying conflict situation was 

resolved by the priorities which occurred from inhibitor arcs. However, if decisions 

for conflict sets are uniquely determined by external factors, there may be situations 

which cannot be solved with inhibitors, i.e., the idea is limited to very specific cases. 

1.3.2 Discrete Event Dynamical Systems (DEDSs) 

Some of the literature pertinent to the study of STPNs bear the heading Dis­

crete Event Dynamical Systems (DEDSs). Basically a DEDS is a collection of 

®The size of the problem that can be handled actually depends on the number 
of markings that can be reached. This, in turn, depends on the number of places, 
the number of transitions, the number of tokens that can be in a place at one time, 
and other factors. These numerous factors make it hard to specify the size of the 
problem that can be solved. 
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inhibitor arc 

Figure 1.1; Example of Petri net with an inhibitor arc 

servers and finite queues connected by a directed graph. Users move around the 

graph. When a user is finished with one server, it moves to another queue accord­

ing to a specified destination rule.^ If users are identified with tokens, servers with 

places, and finite queues with STPN models (see Figure 1.2), then the similarity 

between DEDSs and STPNs becomes evident. Whether the two types of systems 

are equivalent or one is a subset of the other can be decided by the exact formulation 

given by the different authors. 

Most of the literature concerning DEDSs deals with their use in simulation. 

Recently, several researchers have extended this simulation work to include sensi­

tivity measures. Articles on this subject include Ho and Cassandras ;35l, Cao and 

Ho 9 . and Suri :66l. 

^Terminology from Ho and Cassandras 351. 
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Figure 1.2: An STPN model of a finite first-in/out queue 
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2 REVIEW OF STOCHASTIC TIMED PLACE PETRI NET 

(STPPN) THEORY 

2.1 Introduction 

In this chapter, STPPN theory is more formally presented. A general definition 

of STPPN, conditions of well-formed STPPN, and subclasses of STPPN, Conflict-

free STPPN and Free-choice STPPN are discussed. The main purpose of Section 2.2 

is to formally define STPPN concepts. Additionally, some technical assumptions, 

which can be easily satisfied by expanding or shrinking the STPPN^ to ensure 

that the STPPN is well-formed, are provided. It is also shown that the states of 

STPPN consist of the positions and status of tokens^, plus the time left to serve all 

active tokens and how state transition is made. From this, a simulation algorithm is 

derived to generalize token status in the given STPPN. In Section 2.3, the STPPN 

requirements for the STPPN to have a well-formed structure: safeness, liveness, 

and strong connectedness are defined. Liveness is a condition for all transactions 

to fire regularly and infinitely. Safeness^ ensures that each place in the net always 

^Adding or deleting places and transitions according to the expansion theory in 
Genrich et al. [23] and Peterson [55]. 

^Active or inactive 
^Safeness is, in other words, called 1-boundedness, since the upper bound of the 

number of tokens is one [55]. 
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has at most one token, i.e., zero or one token in a place. Strong connectedness is 

the last condition to ensure the existence of sets of direct paths. 

At this point in this thesis, the analysis of STPPNs is limited to safe, live, and 

strong connected STPPNs. Restricting the study to STPPNs having these condi­

tions aids processing order placement and guarantees that the STPPNs dealt with 

have well-formed structures which make their long-term behavior analysis much 

easier. 

Finally, Section 2.4 introduces two STPPN subclasses, Conflict-free STPPN 

and Free-choice STPPN. 

2.2 General Definitions of STPPN 

2.2.1 Basic definitions 

Stochastic Timed Place Petri Net (STPPN) represents its status by static and 

dynamic components. The static component is the graph with related information 

such as processing times and operation rules, which does not change with time. 

The dynamic component is token statuses, which contain information such as their 

locations, states, and remaining waiting time before moving to the next position, 

which changes with time. 

2.2.1.1 Graph The graph of STPPN can be defined by a quadruple, 

N  =  { P , T , A , M o )  

where P = p i ,  P 2 ,  ••• , pn is a finite, nonempty set of places, T = , tm 

is a finite, nonempty set of transitions, A  is a set of input and output arcs, I  and 
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0, respectively, such that I  G (-PxT) and 0  G (TxP), and MQ is an n-component 

vector of non-negative integers and indicates the initial marking of the net. By 

the definition, the fact that P, T, .4, and MQ have no common elements is easily 

obtained. 

2.2.1.2 Tokens and their statuses At any given time in the evolution of 

the STPPN, the number of tokens in the places can be specified by a vector, 

M = [ nil "^2 " • 

where mi is a non-negative integer which indicates the number of tokens in place 

n is the number of places, and M is called the marking of the net. Also, if 

the number of tokens in a place is strictly positive, then the place is called marked 

place. When a token arrives at a place, its status is inactive until the token is ready 

to leave the place, at which time the token becomes active. 

2.2.1.3 Processing time In addition to tokens, a processing time distri­

bution is assigned to each place. The processing time for place is denoted as 

It indicates the amount of time that each token entering the place must stay until 

its state changes to active. In this thesis, the processing times are assumed to be 

exponentially distributed and independent from one token to the next, independent 

over places, and independent of decision rules. 

2.2.1.4 Ti'ansition firing Tokens travel the net by transition firings. When 

a transition fires, it removes one active token from all of its input places and adds 

one inactive token to all of i ts output places. A transition is defined as enabled 



www.manaraa.com

15 

if each of its places contains active tokens or as potentially enabled if each of its 

places contains an inactive token or if some of its places contain inactive tokens and 

the rest of them contain active tokens. 

2.2.1.5 Initial condition To evolve an STPPN, the initial state of the net 

should be specified. To this effect, it is assumed that the initial marking of the 

net plus the status of each token at time zero is given. As will be seen later, the 

mentioned initial conditions can be used to implement the rules of operation."^ 

2.2.1.6 Conflict set Two or more transitions are said to be in conflict if a 

firing transition disables the others. As shown in Figure 2.1, transitions ti and ^2 

are in conflict, since the firing of ti will disable ^2» and vice versa. This example 

is simple because all transitions become enabled at the same time. Another ex­

ample shown in Figure 2.2 represents a more complicated conflict situation, since 

transitions may become enabled at different times, transitions ti and <2* Note that 

according to the above definition, a transition is always in conflict with itself and 

its firing will disable itself. All transitions which can potentially be in conflict are 

assumed to be divided into mutually exclusive conflict sets [58]. 

2.2.2 Rules of operation 

2.2.2.1 Decision rule Conflict situations are essential points in the evolu­

tion of an STPPN where a decision must be made that affects the future behavior 

of the STPPN. To resolve these conflicts, a decision rule must be specified which 

is assigned to every conflict set or equivalently to one of the places connected to 

''There are several ways in which the initial conditions for a net can be specifled. 
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Figure 2.1: An STPPN with a simple conflict 

Pi 

t 

t 
2 

t 3 

Figure 2.2: An STPPN with a more complicated conflict 
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each transition in the conflict set.^ If several transitions in a conflict set are si­

multaneously enabled at any given point, a transition is chosen and then it may 

fire. 

In general, this decision rule depends on the evolution state of the STPPN.® 

Also, since relative time at which tokens in the input places of the conflicting tran­

sitions become active will be used as the ordered index instead of the real time, 

the scope of decision rules of this thesis should be restricted to relative times.If a 

decision rule is allowed to depend on the full state, then causality might be violated, 

since with the ordered index, the transition firings do not occur in the same order as 

if the STPPN were operating in real time. This scope of decision rules will allow to 

model priority decision-making and other time-dependent random events, or some 

combination of the two. This discussion is illustrated next with a pair of decision 

rule examples. 

One conflict situation examined is that shown in Figure 2.1. In the STPPN, 

the transitions <2) ^3, and ^4 are in conflict. As noted before, all of these transitions 

become enabled at the same time. A possible decision rule to resolve this conflict 

is to assign probabilities or priorities which might reflect the outcomes of indepen­

dent random events. Then, every time a token becomes active in ^ transition 

is selected using the probability rule according to priorities preassigned, and the 

selected transition may fire. 

The other conflict situation is shown in Figure 2.2. As mentioned before, this 

conflict situation is more complicated than the previous one since more than one 

^A singleton conflict set has a trivial decision rule. 
®STPPN states are discussed later in this chapter. 
"A relative time will be formally defined later. 
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token is involved. Thus, for example, if the tokens in and P2 are active, but not 

P3, then <4 is enabled and fg is not. Hence, the transition <4 are not in conflict 

and may fire. If the tokens in P2i pg are all active, however, then both 

transitions <4 and are enabled and in conflict. If the time the token in arrives 

is then the decision rule might specify that the times the tokens in pi and pg 

have been waiting should be compared. Hence, the transition that would consume 

the oldest token should fire. This could be done by specifying the following decision 

rule: 

If ri < n ^ T-g, ' choose ^4, 

^ otherwise, choose /g 

Note that in case of a tie, transition ^4 fires first, and thus it has a slightly higher 

priority than ^5. Instead of the priority, a probability rule to resolve the tie can be 

specified. Of course, if active tokens only reside in pj and P2, then (4 fires regardless 

of the time /g last fired. 

2.2.2.2 Transition selection rules As mentioned before, only enabled 

transitions may fire. If there is a single enabled transition at any given time, then it 

fires instantly. If several transitions belonging to the same conflict set are enabled, 

then the decision rule is applied for that conflict set to select one of those transitions 

and the selected transition fires instantly. Note that the transition selection rules 

just presented select a single transition to fire. As mentioned before, this firing 

consumes an active token from each input place and adds an inactive token to each 

output place. If the processing time of one of these output place is zero, then the 

token becomes immediately active and thus may instantly make other transitions 
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enabled. It is only at this point that the transition selection rules are used to select 

the next transition to fire. 

2.2.2.3 Firing time Given the above discussion, when there are several 

transitions enabled at the same time, they always fire in a particular order. Since 

each of these firings takes place instantly, the firing times of all these transitions 

are equal. This situation is a reflection of the fact that STPPNs have two notions 

of time associated with them. One is the real time as measured with respect to real 

time. The other is the event time which is measured by the number of transitions 

that have fired. There is generally neither a one to one nor even one to many 

relationship between them. The transition selection rules discussed above structure 

event time so that ambiguities in real time can be resolved in a consistent manner. 

2.2.3 Simulation of an STPPN 

2.2.3.1 Input specifications To more easily understand the operations of 

an STPPN with conflict situations, the shared resource example in Figure 2.3 will 

be discussed and simulated. First, however, two conditions should be specified, i.e., 

inputs (initial marking and conditions) and processing time for each transition. It 

is assumed that the initial marking places a token P2' ^3' P4- simplicity 

of the example, it is assumed that all markings are initially active and all processing 

times are deterministic and given by the following constraints: 

= «2 = (tg = = 0 

1 / 5  =  « g  =  w j  = 1  

" 8 ~ " 9 ~ [^10 ~ 4 
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In this example, only one non-trivial conflict set consisted of transitions ti, ̂ 2, and 

(g. Since all transitions have pi as the common input, all transitions included in a 

conflict set must be mutually disabling. 

Last, the decision rule mentioned previously should be specified which decides a 

firing order when transitions ti, ^2» S'lid <3 are in confiict. A token in represents 

a shared resource as being active and a token in P2, pg, and p^ represents demand 

sources, respectively, waiting their turn to use the resource. With this interpretation 

about the example of STPPN, it is necessary to determine the order to use the 

shared resource in accordance with the length of the waiting time of each demand 

source. That is, the shared resource will be used by the demand source waiting 

the longest time. In case of a tie, has the highest priority and ^3 has the lowest 

priority. Now, since all inputs have been specified, the STPPN example can be 

simulated. Figure 2.4 shows the first few steps of this simulation, and explains the 

implementation of the operation rules. 

2.2.3.2 State of an STPPN In order to analyze STPPN behavior, it is 

necessary to determine what kind of information should be recorded to predict the 

future behavior of an STPPN state. Needed information is the marking of the net, 

token statuses (active or inactive), and how much time remains for that specific 

token to move forward if a token status is active. 

As mentioned above, one component of the state consists of the position and 

status of every token. To keep track of this component, let vectors Ma and 

denote the marking of active tokens and the marking of inactive tokens, respectively. 

The other component of the state is the time left for each active token to move out. 
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Figure 2.3: The shared resource example of an STPPN 
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P2 «^4 Ps 

C t 5 6 

(a) Time = 0 

: Token in P2i P4 is initially active. 

: Decision rule selects ti. 

Figure 2.4: States of the STPPN 
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(b) Time = 0" 

: Transition ti fires. 

Time = 1 

: Token in pg completes its processing and becomes active. 

: Transition tj becomes enabled. 

Figure 2.4: (Continued) 
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t.. 

(c) Time = 1"^ 

: Transition tj fires. 

: Decision rule selects ^2-

Figure 2.4: (Continued) 
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P2 Pg 

P3 (=5 P9 P4 ^6 P 

(d) Time = 1 

: Transition ^2 fires. 

Time = 2 

: Token in pQ becomes active. 

: Transition Zg becomes enabled. 

Figure 2.4: (Continued) 
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o 

Pg P4 

(e) Time = 2"^ 

: Transition fires. 

: Decision rule selects fg. 

Figure 2.4: (Continued) 
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Pg P4 10 

(f) Time = 2^+ 

: Transition <3 fires. 

Time = 3 

: Token in py becomes active. 

: Transition ig becomes enabled. 

Figure 2.4: (Continued) 
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Pg P4 

(g) Time = 3~ 

: Transition tg fires. 

Time = 5 

; Token in pg becomes active. 

: Transition becomes enabled. 

Figure 2.4: (Continued) 
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P] "4 Pg 

t c P 5 6 

(h) Time = 5 

: Transition <4 fires. 

: Transition becomes enabled. Since there is no conflict 

at this time, no decision rule is needed. 

Figure 2.4: (Continued) 



www.manaraa.com

30 

P2 "4 P8 

t t 

(i)Time = 5~~ 

; Transition ti fires. 

Time = 6 

: Tokens in pg and pg become active. 

: Transitions <5 and tj become enabled. 

Figure 2.4: (Continued) 
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^=4 Pg 

t c P, P P, 

(j) Time = 6~ 

: Transition <5 fires. 

: Transition t-j is still enabled. 

Figure 2.4: (Continued) 
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P2 "=4 P8 

c t 
5 6 

(k) Time = 6 • 

: Transition tj fires. 

Figure 2.4: (Continued) 
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To keep track of this component, if W denotes a vector which contains the 

time left for places which have active tokens to serve and s represents the number 

of places, then the dimension of W equals n, so that when place pj^ contains no 

active tokens, W contains zero as the element. Therefore, the state of an 

STPPN can be defined as follows: 

( Ma, M,., ). 

Figure 2.4 shows how to go from one state to the next in real time basis. From this, 

a real time simulation algorithm will be set up. 

2.2.4 Real time simulation algorithm 

Step 1: Construct initial markings, Ma and M^, and the time vector,® W^. 

Step 2: Construct the transition set enabled by Ma-

Ty = {t^\ is enabled by Ma} • 

Step 3: If Ty is empty, then 

Step 3.1: Subtract one time unit from all positive elements of W^. 

— "'fc - 1' 0) 6 Wi . 

Step 3.2: If equals to zero, then 

{^a)k '— + 1 . 

®The vector represents the time left to serve. 
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Step 4: If T'y is non-empty, then select tg ^ Tj; by transition selection rules. 

Step 5: For all m{fs} 

ma — rtia - 1 . 

Step 6: For all oît;f{/s}î determine from the processing time distributions. 

Step 7: If is zero, then 

nia '•— fT^a + 1 • 

Otherwise, 

W- ^ and m,- ^ +1 . 

Step 8: Repeat Steps (2)-(7). 

2.3 Requirements for Establishing Well-formed STPPNs 

The simulation algorithm specified in the previous section can be easily used 

only when the STPPN is well-formed. In order for the STPPN to be well-formed, 

three following requirements^® are satisfied: safeness, liveness, and strong con-

nectiveness. The reasons that well-formed STPPNs are used in this thesis are 

as follows: in many ill-formed STPPNs^^ the states vary in dimension and are 

constantly changing in forms. This complexity makes it very difficult to analyze 

STPPNs without loss of generality. 

The mentioned requirements will impose easy ordering and assure that no parts 

of the STPPN become deadlocked and thus help for analyzing a SAC system which 

can be interpreted by STPPNs. 

®The in { t s }{out { t s } )  denotes the input (output) place set of transition 
^°Those requirements were defined as properties or conditions of STPPNs [2, 55]. 
iiSTPPNs with deadlocks or STPPNs with unbounded tokens in a place or both. 
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2.3.1 Safeness 

The operation of an STPPN can be generally thought as a succession of marking 

[57], with tokens changing positions from one place to the next as specified by the 

rules of operation. If the number of tokens in any given place is 1-hounded, then the 

place is said to be safe. If the number of tokens for any given place in the net for 

all possible reachable markings can never exceed one regardless of what processing 

time distribution and decision rules are applied, then the STPPN is defined to be 

safe. At this point it would be better to check what differences exist between 

the above definition and the usual definition used in Petri Net formalism.Two 

examples explain the difference between these definitions for net safeness. As shown 

in Figure 2.5, STPPN is safe. However, if processing times are changed as shown in 

Figure 2.6, STPPN cannot be safe, even though its structure is identical to the one 

in Figure 2.5. More precisely, the number of tokens can be two by using different 

processing times as shown in Figure 2.6. However, applying the usual definition to 

this example, i.e., not considering the time measure, the example net is safe. 

The main reason the safeness property is used in this thesis is that it is necessary 

to impose ordering. If multiple tokens in a place are allowed, then they would be 

free to cross each other depending on their variable processing times. Any analytical 

procedure that might be used in this thesis would have to keep track of all possible 

orderings in which these tokens become active. In order to keep track, this study 

will be limited to safe STPPNs. 

^"A marked net is defined to be safe if each place in it is safe [2, 24, 55]. 
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Figure 2.5: An STPPN which is safe 

Figure 2.6: An STPPN which is not safe 
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2.3.2 Liveness 

An STPPN is defined to be live, if for every transition t and 0 < e < 1 there 

exists a finite TQ such that 

Pf {Transition i  will fire before Tq} < 1 — e, 

regardless of what state STPPN has studied and independent of how STPPN 

evolves, Liveness ensures that all transitions fire regularly. If for some reason a 

transition stops firing, i.e., the net is deadlocked, then the part of the STPPN as­

sociated with that transition should be ruled out, since it does not perform any 

continuing activities, or the problem should be reformulated so the transition can 

fire regularly. 

Liveness of an STPPN depends on a complex interaction between the nodes^^ 

of the graph, the initial marking, the processing times and the decision rules. The 

STPPN shown in Figure 2.7, for instance, is deadlocked (and therefore, it is not 

safe), since place pg kas no token. Hence, no transition will ever become enabled, 

and thus all tokens stop moving. 

2.3.3 Strong connectedness 

An STPPN is defined to be strongly connected if and only if there exists a 

direct path from any node to any other node. This requirement is needed for the 

following two reasons. First, It is a necessary condition for any simple connected, 

live STPPN to be safe [55]. As an illustration of this fact, consider the STPPN 

shown in Figure 2.8. This STPPN is not strongly connected and the numbers of 

^^Nodes indicate places and transitions. 
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h P2 

Figure 2.7: An STPPN which is deadlocked 

tokens in pg can accumulate without bound. Second, strong connectedness implies 

simple connectedness. 

2.4 Subclasses of STPPNs 

STPPNs find their basis in few simple rules, yet can exhibit very complex 

behavior. However, the analysis of STPPXs in general requires some knowledge 

about the reachability set and can often be quite complex. Therefore, it is necessary 

to restrict STPPNs in some ways and to study their properties. For this reason, 

two important subclasses of STPPXs are defined here. Analysis of such subclasses 

has provided a relationship among net structure and marking on one hand, and 

dynamic behavior (liveness, safeness, etc.) on the other hand. 
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O 
P2 

Figure 2.8: A live STPPN which is not strongly connected 

2.4.1 Conflict-free STPPN 

An STPPN is conflict-free if and only if for each place in the net there is only one 

input transition and only one output transition. This means that a token at a given 

place is generated by a predefined input transition and consumed by a predefined 

output transition. Therefore, the only way to disable an enabled transition is to fire 

it. Consequently, this kind of STPPN can represent concurrency but not conflict and 

therefore, no decision rules are needed (see Figure 2.9). Conflict-free STPPNs have 

been well-studied. The deterministic case is specifically studied in Ramamoothy 

and Ho 56i and Cohen et al. ,13.. 

2.4.2 Free-choice STPPN 

In Free-choice STPPNs, all transactions in conflict have exactly one input place, 

and that input place is common to all of them. An example is shown in Figure 2.10. 

The imposed restriction means that the decision to select a transition which will 

fire among conflicting transitions can be made independently of the state of the rest 

of the STPPNs. In the aforementioned example, either fg or ^3 may fire, and the 
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PI 

Figure 2.9: A conflict-free STPPN 

the decision does not depend on tokens arriving from other parts of the net since 

the example net contains only two possible token paths which are exactly same. 

Therefore, the decision which transition can fire when a token arrives at the input 

place of those transitions depends on only the present marking states of oui{t2} and 

out{t^}. If o%f{Z2} has a token, the token arrives at inlto} will move out through 

the transition ^3, vice versa. 
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PI 

h.  •tr  

P2 PZ 

^6 

P4 

0 
P'o 

Figure 2.10: A free-choice STPPN 
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3 COMMAND-CONTROL (C'2) SYSTEM MODELING 

3.1 Introduction 

Abundant research has been done to improve systems from several points 

of view such as development of higher level decision aids [4, 22], preparation of new 

doctrines to cope with future changes of battle types by highly developed technol­

ogy [7, 31, 60], design and evaluation of systems [25, 33, 39], etc. However, as 

previously described due to insufficient understanding about processes and sys­

tems, research in this area has not been settled. Therefore, in this chapter general 

characteristics of command-control processes and systems, i.e., how the command 

is exercised, how a task is monitored (C^ process) and how processes are related 

to other processes operationally and structurally (C^ system) are stated. 

To do this. Section 3.2 defines terminologies commonly used in this area and 

their relationships. In Section 3.3, a typical process and a typical system are 

introduced. Then, basic features of the system are discussed. In Section 3.4, a 

generic system is modeled according to operational and structural relationships 

among processes by using the STPPN formalism. 
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3.2 Terminologies 

Information: Raw data originated from changes of external and/or internal environ­

ments. The former is originated from events which activate the system operation: 

for example, unidentified objects which appear on the radar. The latter is obtained 

from events which occur in the system operationally and/or structurally. 

Knowledge: Refined data generated from information based on objects or events 

which occur in the internal/external environments by a decision-maker which is 

used to be a process or a component in the process. 

Command: The exercise of lawful authority done by high ranking personnel to 

their subordinates or units in order to carry out assigned missions and to further 

attain the entire unit's goals under their controls. 

Control:^ The act or power of asserting command or authority, especially in pur­

suance of a specific plan of action. 
CY 

C process: The means by which a team of military personnel makes decisions 

that relate to the deployment and motion of the resources and assets assigned to 

carry out a military mission specified by higher authority. 

organization: The hierarchical way and organization rules by which military 

personnel organize themselves in terms of authority and responsibility by war­

fares and/or geographical sectors. 

system: The hierarchical networks of processes. 

^Too often control  is confused with command in its meaning. The basic differ­
ence is the latter causes actions by subordinates that attain a result [10] and the 
former is actions to ensure that the command is complied with in such a manner to 
attain the right result [30]. 
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3.3 C'^ System of a Battle Organization 

3.3.1 system descriptions 

A 6'^ system of a battle organization can be presented as shown in Figure 3.1. 

The system not only has hierarchical structures, but also can be considered as a 

SAC system operated asynchronously and concurrently. Therefore, as mentioned in 

Chapter 1, this system can be presented well by Stochastic Timed Placed Petri Nets. 

The system consists of one commander (CMD) section, one combat-information-

center (CIC), a battle groups (BGs),^ sub-battle groups (SBGs), and ç inde­

pendent battle groups (IBGs) directly controlled by CIC. Once the system receives 

the information for threats of the counterforce obtained by detecting manners such 

as optical search or radar detection, each process in the battle group proceeds its 

task with its own decision process. Then, each unit reacts for coming threats. (See 

Figure 3.2.) 

A decision process contains four decision steps: (1) threat analysis (TA); (2) 

availability evaluation/resource allocation (AR); (3) command interpretation (CI); 

and (4) response selection (RS). As seen in Figure 3.2, each battle group is connected 

by communication routes such as reporting and commanding (see Figure 3.1). 

3.3.2 Basic features of a system 

In this thesis, a fundamental assumption that the underlying system is in the 

battle mode is taken. Thus, several different situations in comparison with peace­

time should be considered. 

"Each battle unit is supported by b SBGs. 
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Report 

Order 

-( 

SBG SBG SBG 

CIC 

Commander 

BG BG BG IBG IBG 

Figure 3.1: System structure of a system 

command 
reporting reporting receiving 

information engagmg 

receivmg 
AR RS TA 

information information commanding 
fusing fusing 

Figure 3.2: Typical decision process of a system 
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First, information collecting may not be regular in wartime, although events 

which occur may be predictable before information is received about these events; 

whereas in peacetime, information collecting is rather predictable and regular. 

Therefore, information collecting time is not deterministic, but random. However, 

since it is not the concern of this thesis, incoming information (i.e., system input) 

is assumed to always be available. 

Second, task processing times are also stochastic, although time variation may 

become narrower than before by using decision aid devices such as computers and 

by repeating exercises. 

Finally, system components in war time may be destroyed with some probabil­

ities by engaging with their counterforces. Thus, system performance decreases by 

ruling out of destroyed combat units or decision groups. Thus, more burden should 

be assigned to the rest of combat units in order to perform system tasks unceas­

ingly. To do this, deterministic hit and malfunction probabiHties are assigned to 

each component. Also, the system structure is changed by the reasons described 

above as another feature of the wartime system. 

Therefore, in this thesis, two C'^ systems, the system operating with normal 

communication routes (system N) and the system operating with changing commu­

nication routes (system C) are evaluated and compared in terms of system effec­

tiveness. 

3.4 STPPN Modeling of Systems 

As assumed previously, the STPPN models of two systems are safe, live, and 

strongly-connected. In this section, in order for the underlying system to transform 
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into STPPN models, two design factors, capacity and time are considered. 

3.4.1 process model 

Figure 3.3 show aggregated Petri net models of a process. As described 

in Subsection 3.3.1, the decision process occurs in four stages: (1) threat analysis 

(TA), (2) availability evaluation/resource allocation (AR), (3)command interpreta­

tion (CI), and (4) response selection (RS). Incoming information (either external or 

internal) are fused at each TA stage with the threat assessments transmitted from 

other processes and then assessed. This knowledge is then combined by the AR 

stage with availability evaluation and resource allocation. The resulting knowledge 

is combined with commands transmitted from its superior in the CI stage, so as to 

select a response for the threat in the RS stage. 

Each of the four stages corresponding to the particular task performed by each 

6'^ process is modeled by a place and connected by a transition. The firing of a 

transition represents the receiving and transmitting of information or knowledge 

from one place to other places, according to the task sequence which follows the 

structural relationship of processes. Transitions receive and transmit the informa­

tion that is exchanged between different processing stages. 

Meanwhile, since places represent various tasks to be processed, characteristics 

of places need to be further specified. From Figure 3.3, it can be seen that places 

contain two types of information besides incoming information from the environ­

ment. That is, places process the information being exchanged between a process 

and other processes or environment, and places carry the information being inter­

nally processed at a process. The first type of place allows for modeling the 
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Figure 3.3: Model of a C~ process 

interactions between C" processes and the environment, or other C processes. 

Places containing such information or knowledge are inputs to the C'^ process or 

outputs of the process, but in no case can they be both at the same time. There­

fore, they determine in fact the organizational structure (that is why the place is 

called sfructurol place 32!), i.e., the internal interactions between C~ processes 

or the interactions between the C'^ process and the environment. The second type 

of place makes possible modeling of the internal structure of the interacting C'~ 

process. This type of place treats information used at the next stage. In contrast to 

the structural places, these places are both input and output places of the same 

process. At this point, it should be considered that the processing of a specific in­

put takes place in an asynchronous manner, i.e., delays generally occur between the 

different processing stages precisely due to the interaction with the other processes 

or the environment. Therefore, a place acts as a temporary storage of information 

until its output transition can be enabled. 
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3.4.2 6'^ process model with constraints 

As seen in Figure 3.3, the model of the interacting process does not take 

into account the limited capacity for information processing which characterizes the 

process. Indeed, as long as information messages exist, i.e., tokens are available in 

places Pi and pg, the processing can start, i.e., the process corresponding to the 

TA stage can proceed by firing transition ti. However, the information processing 

is subject to the bounded rationality constraint, as defined by Boettcher [6]. In the 

information-theoretic approach, the amount of information processed is measured 

by the total activity, Q, of the process, which also characterizes its workload. It 

is assumed that there exists an upper bound of Q, Qu, above which the process 

becomes overloaded and its performance decreases: 

Q ^ Qu • 

When the analysis is performed for the steady-state process, the above constraint 

takes the form: 

Q — — Qu ; 

where F is the processing rate that characterizes the process and A is the average 

arrival rate of an input. This constraint implies that the process must perform 

inputs at a rate at least equal to the rate at which they arrive. 

As mentioned previously, in this thesis the performance measures are only 

concerned. In other words, the accuracy of the response is not dealt with. In 

particular, the way a process reacts to information overload and the extent to 

which affects its performance are not a matter of concern here. However, this 

remains allowable in so far as the actual processing constraint is included. This can 
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be expressed by writing the inequality in another form, 

Using the above relation, the bounded rationaUty limitation is, in this case, a con­

straint on the allowable rate of incoming inputs, i.e., on the maximum rate of inputs 

that can be handled by the process without being overloaded. 

Now, consider how to model this constraint using the Petri Net formalism. In 

fact, the limited processing capability of a process come from the limited ca­

pacity available to perform the various processing tasks. In particular, the bounded 

rationality constraint is very much related to the limited capacity of the human 

short-term memory, defined as the memory in which the information is held tem­

porarily. Indeed, this bound means that a C process cannot handle properly 

too much information at the same time. Therefore, the limited capacity of the 

short-term memory can be modeled, using the Petri Net formalism, as a capacity 

constraint on the corresponding places P2) PS? P4 as shown in Figure 3.4. 

The added place pc whose input transition corresponds to the RS stage and 

output transition to the TA stage, allows for modeling the information processing 

constraint, pc can be called capacity place because the number of tokens put 

initially into this place represents the capacity available for processing. Indeed, the 

direct path, 

P = {Pc t l  P2 h  P3 ^3 PA 4)  '  

determines a circuit in the net in which the token content remains invariant by 

transition firings, i.e., for any reachable marking M: 

4 4 
iV/(pc) + E + E M°(n) = M%pc). (3,1) 

i=2 i=2 
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Figure 3.4: process model with limited capacities 

It is assumed that places P2» P3' ^.nd P4 contain initially no tokens, which means that 

there are no processes being performed initially. Now. the constraint on the memory 

capacity is trivially satisfied. Assuming that there are n capacities available, i.e., 

M^{pc) = n which may represent the amount of memory space available, it can 

be deduced from the marking equation (3.1) that, at any reachable state of the 

process. 

A/(P2) ^ ^ ^ ^ ' 

which precisely models the short-term memory limitation, as described previously. 

At this point, it is possible to extend further analysis of the model, especially 

with respect to the processing rate. Now, specifying how the processing of inputs 

occurs with the same assumptions about the initial marking of each place, i.e., 

M°{pc) = n and M°{p2) = = M^{p4.) = 0, the processing of any new 

input starts with the firing transition t i ,  which consumes one token from place pc-
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Likewise, when the processing is completed, transition fires, which produces one 

token back to pc- In other words, one capacity is engaged at the beginning of the 

process and is released at the end of the process. Clearly, the process can only 

process at most n different inputs at the same time. If n inputs are currently being 

processed, the pc is empty. Thus, transition is not enabled although,place pj has 

an active token. In other words, the capacity (or resource) constraint turns out to 

be bounded by the number of inputs that the process can handle simultaneously. 

To analyze deeper how the capacity constraint affects the processing rate, it is 

necessary to introduce the mean processing times of the processes, P21 Pg, and 

that will be denoted by /it2, and respectively. The main concern here is to 

make clear how the capacity limitation actually bounds the processing rate. Now, 

if the decision processes were fully synchronous, which means that no delays would 

occur between the different processing stages, it would take the amount of time, 

P-s = ' 

to complete the processing of any input. Since the 6'^ process can handle at most 

n inputs at the same time, the processing rate, /, is necessarily bounded by 

n n 

l^s 1^2 + + ̂ 4 

There is, however, an additional constraint to include, i.e., the execution of any 

processing stage can take place for one input at a time as discussed in Chapter 2. 

Therefore, the actual bound of the processing rate is determined by 

0 = min{f ,  —, —, —) . (3.2) 
^3 H 

It will be shown in Chapter 5 that ( j )  determines precisely the maximum information 

processing rate that characterizes the 6'^ process. This rate constraint is derived 
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from the limited capabilities of a process, which include both the capacity lim­

itations and the processing time constraints, cj) is, in fact, similar to the processing 

rate constraint /. 

3.4.3 system model 

So far, the model of the simple interacting process has been developed. 

Next, the aggregated Petri net model for the overall 6'^ process, which forms a 

system, is presented. 

3.4.3.1 system model interacting with the environment The in­

teraction between a 6'^ system and the external environment has been described in 

Subsection 3.3.2. The first processing stage of the 6'^ system consists of the parti­

tioning of the external information into a set of input information that is assigned 

to different processes. This kind of information allocation has been addressed by 

Stabile and Levis [64]. Assuming, for example, that the processes, C^, - • •, C'|, 

are interacting directly with the environment, the corresponding Petri net can be 

represented as shown in Figure 3.5. 

The place po represents the source of information and the transition models 

the partitioning operation. Since it is held at the first processing stage, will be 

called the input transition of the process. Each time that fires, one token is sent 

to places, pj, • • •, pg, which are the input places of 6'^ processes, from the capacity 

places of 6'^ processes, > • •, respectively. It should be clear that this model 

implies an overall synchronization between the individual inputs received by each 

of the processes. In the following stages, however, the processing of the inputs 
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Figure 3.5: Petri net representation of the partitioning information 

by each C" process becomes asynchronous and concurrent. 

Likewise, the Petri net representation of the C" system has an output transition 

which characterizes the last processing stage. The output place of this transition 

contains the system responses for the input information. 

Interestingly enough, the overall process can be imagined as taking place through 

a sequence of three major stages. Each of the stages corresponds to a particular 

action, i.e., the input action, the processing action, and the output action. 

3.4.3.2 C" system model with limited capacities The analysis of the 

capacity constraint performed in Subsection 3.4.2 can be applied, in fact, to the 

system as a whole. Indeed, the capacities used by the overall system may have 

various forms, but there exists always at least a processing constraint that comes 

from the limited capacity of the structural places. This constraint is very similar 
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As described in Subsection 3.4.1, the structural places receive and transmit the 

information between processes, and between 6'^ processes and the environment. 

Since the process is asynchronous, the information is stored temporarily in these 

places, exactly as what occurs for the internal decision process of a process. 

These places are, in fact, the buffer storage within the system, where some informa­

tion is stored temporarily. It is, therefore, important to assure that at no instant 

does the amount of information stored exceed the buffer capacity of the system, i.e., 

the capacity of the structural places. 

Assuming that the arrival rate of external inputs exceeds the maximum proc­

essing rate of any one of the processes, it follows that will fire at the same 

rate with which input information arrives. Therefore, tokens will necessarily accu­

mulate in the system and, in particular, the token contents of some structural places 

of the net will eventually grow to infinity over time. In such cases, the system is 

overloaded. 

To treat this problem, the Petri net model should be modified by adding an 

extra place, exactly as done for the single 6'^ process. The resulting model is shown 

in Figure 3.6. Qo is the capacity of the overall system: the number of tokens put 

initially in this place bounds the number of input information that the system 

can process simultaneously. Indeed, each time that a new input is processed, a token 

is removed from Qo and returns to Qo once the process is completed. Assuming that 

Qo contains initially n tokens and that n inputs are currently being processed, then 

Qo is empty and no more information can be received because is not enabled. 
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Qo 

Figure 3.6: system model with limited capacities 

3.4.3.3 C'~ system model with time constraints The task processing 

times are included in the model by assigning to each place a corresponding execution 

time. Now, all needs to model the system described previously into an STPPN 

model are prepared. Therefore, the underlying systems can be modeled as shown 

in Figures 3.7 and 3.8 for the normal and the changing structure cases, respectively. 
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Figure 3.7: STPPN model of system N (model N) 
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4 STATE FORMULATION OF STPPN 

4.1 Introduction 

In Chapter 2, it was shown that the state of an STPPN could be explained 

by the position and the creation time of every token. The time was decided by 

the firing time of the transition, which created the token. In this chapter, state 

equations are formulated to keep track of the marking and of the transition firing 

time. 

In Section 4.2, the unfolded STPPN is presented, which is an another form 

of the original STPPN, in order to decompose the evolution states of the original 

STPPN. Also, the fact that the order in which transitions fire with respect to 

the event time in the unfolded STPPN can be changed without affecting the real 

time is shown. With the order alteration, the evolution of the original STPPNs 

can be visualized to an infinite collection of unfolded STPPNs. This visualization 

provides a partial order of the unfolded STPPNs. Section 4.3 discusses the marking 

process that accounts for all reachable markings the STPPN can go through. This 

is accomplished by using the partial order. Since the marking process is augmented 

with time elapse, an ordered index which can be used to describe the system can 

be obtained by counting the number of transitions fired. Once the state equation is 

obtained, the evolution of the net can be traced and its behavior can be investigated 
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by iterating this equation from a state to the next state. These equations provide 

the way to simulate the evolution of the net. Therefore, in the final section, state 

equations which keep track of transition firing times are deduced. Additionally, the 

event simulation algorithm is developed. 

4.2 Unfolded STPPN 

One of the possible ways used to describe the STPPN mathematically is to 

obtain an ordered index. In order to get the ordered index among transition firings, 

unfolding the original STPPN is necessary. The resulting STPPN, the unfolded 

STPPN, should contain no simple direct circuits^ with maintaining the causality of 

the original STPPN (see Figure 4.1). A partial order will be established by using 

the unfolded STPPN, which is the basis in obtaining the ultimate ordered index of 

the STPPN of interest. 

In this section, an unfolding algorithm used to unfold the original STPPN in 

Wiley [75] is presented for the purpose of obtaining an ordered index. Then, a 

functioning unfolded STPPN is shown. Finally, equivalency of two evolutions of 

the original STPPN and of the corresponding unfolded STPPN is proven. 

4.2.1 Unfolded STPPN construction 

An unfolded STPPN is constructed by cutting every simple directed circuit^ at 

an appropriate transition obtained from the original STPPN, unfolding, and con-

^A simple direct circuit indicates that a finite chain with the first and last nodes 
being coincident in which no nodes (transitions or places) in the path are repeated. 

^In order to find all simple directed circuits in a net (or a graph), Martinez and 
Silva's algorithm [44] is used. 
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Simple Directed Circuit 

Splitting 

Unfolding 

Pj ^2 

Labeling 

Figure 4.1: Example of splitting, unfolding, and labeling of a simple directed cir­
cuit 
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necting each circuit together in such a manner that no simple directed circuits are 

formed in the decomposed net. To split each circuit, care must be taken because 

wrong selection of the transition which cuts each circuit may not only break the 

causality of the original STPPN, but also result in altering the firing orders even 

though it may not break the causality. To make the evolution of the, correspond­

ing unfolded STPPN identical with the original STPPNs, two simple additional 

procedures are required. 

One procedure is the labeling of unfolded, simple directed circuits. By splitting 

the selected transition into two copies and then unfolding it, a directed sequence of 

places and transitions beginning and ending at the same transition will be obtained. 

The labeling of a circuit is accomplished by labeling transitions and places in the 

circuit with the superscript k, except for the last transition. The last transition is 

labeled with the superscript k+1. Examples of splitting, unfolding, and labeling of 

a circuit are shown in Figure 4.1. 

The second procedure is the union of unfolded STPPNs. Since each circuit can 

be considered as a small STPPN, the only problem to resolve is the combining of 

the small STPPNs. Suppose there are n STPPNs characterized by the quadruples 

iV|, N2-, " •, Nn, then the union of the n STPPNs is defined by the quadruple N 

[20]. An example is shown in Figure 4.2. 

In the case of combining unfolded circuits, the above definition can be directly 

applied as shown in Figure 4.3. The algorithm to construct unfolded STPPNs 

follows with an illustration of how the algorithm works. 
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4.2.2 Algorithm: Construction of unfolded STPPNs 

Step 1: Find all simple directed circuits from a given regular STPPN. 

Step 2: Cut each circuit at an appropriate transition and copy that transition. 

Then, attach a copied transition to the other edge which does not contain the 

transition. 

Step 3: Select, label, and unfold a circuit. If there exist circuits that are self-looped, 

choose one and make it a frame. If no self-looped circuits exist, then choose the 

longest circuit which contains the transition that will fire first.^ 

Step 4: Select, label, and unfold another circuit, and connect it to the existing 

frames. If there is no frame to be connected, then make another frame. 

Step 5: Continue Step 4 until there is no circuit left in the set of simple direct 

circuits. 

Step 6: If there are no circuits left in the set, check the number of places for each 

transition. If the number of places for a transition is the same as in the original 

STPPN, then the algorithm is terminated. Otherwise, add places at the transition 

which has a different number of places to the original STPPNs and label using the 

following ways: 

a. Label superscript k-1 for the place that is the input place of the transition 

with superscript k. 

b. Label superscript k-fl for the place that is the input place of the transition 

with superscript k-f-1. 

In Figure 4.4, by using the algorithm which was developed by Martinez and 

^In practice, the problem is choosing a specific circuit to be unfolded first. The 
selection of a self-looped circuit or the longest one is a matter of convenience. 

^Such a circuit will be connected before all circuits are selected. 
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Figure 4.2: Example of union of STPPN 
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k — 1 

Figure 4.3: Unfolded graph of the regular STPPN in Figure 4.2 

Silva _44j, six simple directed circuits can be found. According to the algorithm, 

the circuit selected first is the 6'^ circuit which is self-looped under the assumption 

the STPPN of interest is safe. Note how an unfolded circuit is created in Step 3, 

and how extra places are added and labeled in Step 6 (see Figure 4.5). 

The algorithm works by taking one circuit from the set at a time, unfolding and 

combining it at an appropriate transition. In the aligning process, circuits may be 

created inadvertently. However, since the algorithm selects a transition at which it 

must split when a circuit is considered and then splits all other circuits containing 

the selected transition at that transition, it is not possible to create circuits in 

the unfolded net after all circuits are connected by the algorithm. Therefore, the 

resulting net, i.e., the unfolded STPPN is circuit-free as mentioned previously. 

As seen in the previous subsection, by specifying the value of the superscript 
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k varies from 1 to infinite, an infinite collection of the unfolded STPPN can be 

obtained, since all places and transitions in the net are labeled with superscripts 

k-1, k, and k+1. 

4.2.3 Evolution of unfolded STPPN 

Since the operation of the regular STPPNs can be viewed in terms of the op­

eration of this infinite collection, what remains to be considered is how an unfolded 

STPPN evolves. 

Operation rules of unfolded STPPNs are basically identical to those of the 

regular STPPN in token advancing, i.e., if tokens in all input places for a transition 

are active, then they move to output places of the transition just fired. However, 

since unfolded STPPNs evolve one state at a time and thus the state transition is 

performed when the previous state reaches a deadlock,^ a transition which contains 

active tokens in all its input places may prevent its firing. 

As an illustration, consider the STPPNs in Figure 4.6. Initially, both STPPNs 

contain tokens at places pg, pg, pg, and pj. Initializing the corresponding proc­

essing times of those places as zero time units and selecting the processing times of 

places pi, P2, and as 1, 2, and 0 time units, respectively, the unfolded STPPN 

evolves as follows. After transition fires at time 0"^, tokens will be added places 

pj and P2) token for each place. Then the token in place will leave state 1 at 

time 2. Transition ^2 cannot fire since there is no token in place pg. Eventually, the 

^Deadlock used here has a different meaning rather than deadlock presented 
in Chapter 2. The latter indicates the ill-formed conversion of the system to the 
STPPN. Meanwhile, the former indicates that the evolution of the net is temporarily 
stopped since the unfolded net can evolve one stagt at a time. 
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3 

(1) 1^2*^2 ^2^6^395^^! 

(3) t^P^tjPgt^ (4) [2^1^1^3^395^2 

(5) [296^394^1^2^2 ^^^7^2 

Figure 4.4: Example of the STPPN with a list of simple directed circuits 
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Figure 4.5: Unfolded STPPN construction 
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token in place pj is temporarily deadlocked. Meanwhile, in the original STPPN, 

transition ^2 Ares at time 1 and fires at time 2. That is, an order alteration is 

occurred in the evolution of the unfolded STPPN (see Figure 4.6). Therefore, some 

modifications and additions for operation rules addressed in Chapter 2 are needed. 

In order to prevent the discrepancy between evolutions of the original STPPN 

and the corresponding STPPN, two methods are considered. One method is placing 

a token at place pg instead of pg, when tokens are copied initially from the original 

STPPN. The other method is placing a token at place Pg instead of pg and delaying 

the firing of transition until ^2 fires. Both methods are identical in terms of 

the processing order and the cycle processing time. The former, however, does 

not need to delay transition to prevent the order alteration. Therefore, in this 

thesis, the methods in which placing tokens without delaying is used. Moreover, 

the unfolding algorithm developed in Subsection 4.2.2 cannot be directly applied to 

describe the former concept in order to prevent the evolution delay. Therefore, some 

modifications must be made. However, the manner of transporting tokens from one 

state to the next state does not need to be changed. For modifying the algorithm to 

remove discrepancy between the original STPPN and the corresponding unfolded 

STPPN, refer to the example in Figure 4.7. In step 6 of the algorithm, after adding 

and labeling places, change the label (superscript) of place pg from zero to one, i.e., 

from pg to pg and connect it to transition Change the label of place pg which 

is connected to transition t'2 from one to two, i.e., from pg to pg. Then, delay of 

the evolution can be prevented (see Figure 4.8) and thus no discrepancy exists. For 

more generalizations, the modified algorithm is formally presented next. 
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Figure 4,6: Discrepancy of evolutions between the original STPPN and the corre­
sponding unfolded STPPN 
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Figure 4.7: Delayed transition and delivery tokens as a state is transited 
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4.2.4 Algorithm: Construction of unfolded STPPNs with no discrep­

ancy 

Step 1: Find all simple directed circuits from a given regular STPPN. 

Step 2: Cut each circuit at an appropriate transition and copy that transition. 

Then, attach a copied transition to the other edge which does not contain the 

transition. 

Step 3: Select, label, and unfold a circuit. If there exist circuits that are self-

looped, choose one and make it a frame. If no self-looped circuits exist, then choose 

the longest circuit which contains the transition that will fire first. 

Step 4: Select, label, and unfold another circuit, and connect it to the existing 

frames. If there is no frame to be connected, then make another frame. 

Step 5: Continue Step 4 until there is no circuit left in the set of simple direct 

circuits. 

Step 6: If there are no circuits left in the set, check the number of places for each 

transition. If the number of places for a transition is the same as in the original 

STPPN, then the algorithm is terminated. Otherwise, add places at the transition 

which has a different number of places to the original STPPNs and label using the 

following ways. 

a. Label superscript k-1 for the place that is the input place of the transition 

with superscript k, but if there exists an input place with a token, then label 

superscript k instead of k-1 to that place and label k-fl to the same place that is 

the input place of the transition with superscript k+1. 

b. Label superscript k-j-1 for the place that is the input place of the transition 

with superscript k-j-1. 
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As mentioned previously, the infinite collection of the unfolded STPPN should 

reflect the original STPPN in its evolution. Therefore, to assure this reflection, 

the following should be specified when a state transits to the next state: (1) 

initialization of tokens in each state, and (2) copy of the processing time for each 

place. 

In order to initialize tokens in the next state, two following cases should be 

considered. One case is that there are tokens left at the previous state, say state 

k. In this case, memorize the exact transition fired last by those tokens and then 

initialize tokens in output places of the last fired transitions in the present state, 

say state k+1. The second case is that there are tokens deadlocked temporarily or 

delayed in state k. In this case, place tokens in those places of state k+1 if the 

places with the same superscripts as in the previous state exist in state k+1. If no 

such places exist, place tokens in corresponding places with superscript k+1. An 

illustration is shown in Figure 4.8. 

4.2.5 Safeness and Liveness of Unfolded STPPNs 

So far in this chapter, the analysis has been based on the assumption of safeness 

and liveness of STPPNs. This subsection discusses these properties of the regular 

STPPN for the corresponding unfolded STPPN. 

Safeness is easier to investigate. In Chapter 2, an STPPN was defined to be 

safe if and only if the underlying Petri Net is safe. Since the unfolded STPPN 

satisfies the same graphical constraints as the original STPPN, the conclusion can 

be made that the former is also safe. 

Liveness is more difficult to address. In the regular STPPN, this property 
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Stage 1; At time 0 u= 

u=0 u=l u= 
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Staqe 2; At time 2^. 

Figure 4.8: Corresponding unfolded STPPN with no discrepancy of an example in 
Figure 4.6 
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guarantees that the probability that any particular transition will fire from any 

state will get arbitrarily close to one, if the evolution time is long enough. In the 

unfolded STPPN, however, the repeated firings of a given transition correspond to 

the firings of transition = 1, 2, • • •. Also, the condition for unfolded STPPN 

to transit from one state to the next state is that the STPPN reaches deadlock. In 

other words, all transitions included in the state before a state transition is made 

will never fire again in that state. Therefore, the unfolded STPPN is not live in this 

sense. However, since an unfolded STPPN is an infinite collection of small unfolded 

STPPNs, it can be shown that the probability for some transitions to fire will get 

arbitrarily close to one, if the evolution time is long enough. Suppose that a given 

unfolded STPPN corresponding to a regular STPPN evolves in state A;Q. Then, 

regardless of what state the unfolded STPPN has reached, for every transition 

and e > 0, there exists a TQ such that 

Pr{some transition k > A;Q will fire before TQ} > 1 — e . 

if and only if the original STPPN is live. It follows from the one-to-one correspon­

dence between sample paths of the regular STPPN and the corresponding unfolded 

STPPN. 

4.3 Evolution Path Construction of Unfolded STPPN 

In order to analyze an STPPN, it is necessary to construct a certain structure® 

which enables explanation of the entire evolution path of an underlying STPPN. 

First of all, in order to obtain such a structure, all possible state indices that one 

®The structure is equivalent to the reachability set of the underlying STPPN. 
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state of the unfolded STPPN can go through should be traced. As previously 

defined, since a state can be decided by positions of marking and token creation 

times, all possible state indices must contain the list of places which have tokens 

and the list of transitions whose firing times are included in that state. A connected 

form of each possible state according to the order, then, will consist of all possible 

paths of the underlying STPPN. Therefore, a single evolution path of the STPPN, 

called a firing process, can be obtained. 

4.3.1 Marking process construction 

In this subsection, procedures that transform unfolded STPPNs to the marking 

process are presented. The basic idea used to construct this process begins by setting 

up the initial state index which indicates the initial state of the underlying unfolded 

STPPN, which is nominated the marking state, That is, contains a list of 

marked places and a list of transitions which create tokens of marked places. From 

the marking in this index, several transitions have tokens in their input places. 

Then, a transition among output transitions of marked places is selected and fired. 

This transition firing follows a new state index. The new. state index includes 

a transition just fired and output places of that transition in addition to places 

that still have a token in spite of the transition firing and their input transitions. 

That is, from the initial state index, input places which lost tokens by a transition 

firing and their input transitions are ruled out. Instead of these places and their 

input transitions removed, new marked places and the transition which just fired 

are added. By this way, a set of all possible marking states is created. Then, 

each marking state is connected to the previous marking state with a direct arc 
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labeled with the transition just fired. From Figure 4.9, the first marking state, 

can be easily obtained from the initial marking state of the STPPN under 

consideration. Then, since transitions and <2 have tokens in all their input places, 

new marking states and consist of places which have inactive tokens and 

their corresponding input transitions, i.e., a just fired transition. Also, new marking 

states include tokens of marking state whose statuses are unchanged by firing 

ti and ^2' After creating new marking states, the marking state set is connected 

with directed arcs labeled with just fired transitions, i.e., from to and to 

with labels and respectively. In the same way, the marking state creation 

continues until the new marking state coincides with the initial marking state, M". 

In other words, the final marking state created in a state is an exact replica of 

the marking state M^. Then, the resulting set of marking states forms a net and 

provides all possible sample paths of the underlying STPPN (see Figure 4.10). 

As described above, in the marking state creation from the previous marking 

state, all possible decisions must be represented by choosing transitions which lead 

to the new marking state. In this example, since and ^2 a^re in conflict, two 

marking states are obtained as shown in Figure 4.10. The formal algorithm to 

construct the marking process is given next. 

4.3.2 Algorithm: Marking process construction of the STPPN 

Step 1: Set up initial marking state from the initial marking positions. 

Step 2: Create new marking state(s) by firing transitions which have tokens in their 

input places. In this step, care must be taken. First, if in a single transition set 

there are more than one possible enabled transitions, create for a new marking state 
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k+l 

k+1 

Figure 4.9: An example of STPPN and the corresponding unfolded STPPN 
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"A 

k+1 Jc+l 

Figure 4.10; The A;"' state marking process of Figure 4.9 

for each enabled transition. The reason is that since the marking process does not 

contain time, which transition will fire first cannot be known. Second, if enabled 

transitions are in a non-trivial conflict transition set, fire all enable transitions and 

create a new marking state for each fired transition. 

Step 3: Connect new marking state(s) from marking state to each new marking 

state by directed-arcs labeled with just fired transitions. 

Step 4: Continue Steps 2 and 3 until marking state A/" is repeated. 

Step 5: Label all places and transitions in all markings of the state with superscript 

k except the final marking. Then, label places and transitions in the final marking 

with superscript k—1. 

As shown above, the algorithm is generalized by labeling superscript k. There-
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I 
Po  

1 
P4  

Figure 4.11: Part of Figure 4.9 

fore, a sample path of the infinite collection of the unfolded STPPN can be repre­

sented by a single path through the infinite collection of the marking process. 

4.3.3 Ti'ansition firing times and firing processes 

The firing process augments the marking process with token creation times. 

Once the marking process is constructed, from the initial marking state. which 

may have several output marking states, exactly one transition among all outgoing 

transitions will be selected by the transition selection rules. Therefore, the firing 

time of that transition can be easily deduced by adding the token creation time 

to the processing time for each of the tokens absorbed by the transition firing. In 

Figure 4.10, the firing time of the transition ti at the first state is 

5| = Token creation time n7ax{j/Q, w^}. 

After a selected transition fires, another transition is selected from the new marking 

state and by the same procedure the next transition firing time can be obtained. 
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By iterating this procedure, the firing process is constructed. Consequently, the 

simulation of the net can be performed by using this process. 

This procedure has many advantages. First of all, by the construction of the 

firing process, not all possible marking states are needed in the marking process. 

Second, this results in a smaller number of states needed to characterize STPPNs 

than would be necessary if they were analyzed in real time. Third, since only one 

transition can fire at one time at each state of the marking process, this makes it 

easier to obtain equations of the firing time. Finally, the firing process provides 

an ordered index which corresponds to the number of transitions fired since the 

evolution has begun. 

In the previous three sections, the conversion was discussed of the regular 

STPPN into the corresponding firing process. In this section, equations of transition 

firing times are derived. 

In order to derive firing time equations, the marking process constructed in 

Figure 4.10 is used. Assume that all tokens in places of the net are initially active 

and the evolution starts at time zero. Also, assume that transition Ares first and 

denote the instant of time that fires at state 1 as 5|'. Then, the firing sequence 

4.4 Derivation of Firing Time Equations 

of state 1, (-^1 -^3 is 

(4.1) 

(4.2) 

(4.3) 
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Adding equations (4.1), (4.2), and (4.3), 

Sg = 5} + u\  + U3 . 

At stage 2, transition <2 must fire first. Also, the firing instant of ^2 is determined 

by 

max{S^ + «4, + Uq} . 

Therefore, the firing sequence of stage 2, (S^ SQ ) is 

5| = = max{S^ H-"4'  "^3 "o)  (4.4) 

M
 

= + "2 (4.5) 

II
 = H- it| . (4.6) 

Adding equation (4.3) to (4.4), 

S2 = + U3 + U4, 5| + Uq + U|} . 

Let 622, 6^2 be u^ + U3 + «4, uq + u^, respectively. Then, 

S2 = 5'| + ^12} 

= + max{S\-^, 612} • (4.7) 

Adding equation (4.5) to (4.6), 

5g = 52 + U2 + ug . (4.8) 

At stage 3, transition fires again. Also, its firing time is determined by 

max{SQ + ît0, 54 + UQ} . 
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Therefore, the firing sequence of state 3, (5^ is 

Si = max{SQ H- fig, + ug} . (4.9) 

Adding equations (4.5) and (4.8) to (4.9), 

5^ = m(ix-[S2 ^^6' *^2 ^Q} 

= ^2 "f" Tnax-{^u^ + ug 4- wg, ztg "t" ^'•Q} ' (4.10) 

Let ^21) ^22 ((^2 "5 + "g), ("2 + (tg), respectively. Then, 

5'^ = 62 + max{52i, S22} • (4.11) 

By reiterating, the instant of time that the first transition fired at state k can be 

deduced as 

a. If Â; = 1, 

= 0 . (4.12) 

b. If k is even, i.e., k = 2n,  

5'! = ^12^}^ fc = 2n, n = 1, 2, • • • . (4.13) 

c. If k is odd, i.e., k = 2n -f 1, 

= 5^-1 -r niax{6^ï^ ,é^2^},  k  = 2n + 1,  n  = 1,2, .. . (4.14) 

Equations (4.12)-(4.14) are based on the assumption that transition ti fires first at 

stage 1. In the reverse case, i.e., if ^2 fires first, then equations (4.12)-(4.14) can be 

rewritten as 

a. If ^ = 1, 

5^ = 0 . (4.15) 
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b. If k is even, i.e., k = 2n, 

= S2 ^ + max{62i \ ^ = 2n, n = 1, 2, ••• . (4.16) 

c. If k is odd, i.e., k = 2n + 1, 

S2 = ^ + m.ax{0^-^ \ 6^2 ^}) A: = 2n + 1, n = 1, 2,• • • . (4.17) 

Equations (4.11)-(4.13) and (4.14)-(4.16) show that the state of the present stage can 

be deduced if the state of the previous stage is known. Interestingly enough, these 

equations include the processing times of the circuits of the net (see Figure 4.10). 

That is, it implies that the initial state of the new stage is determined by the initial 

state of the previous stage plus maximum circuit processing time whose circuit is 

processed at the previous stage. Also, since the interval (5^' — S^~^) means a 

cycle  t ime of  the  ne t  a t  s tage  k,  

gk _  gk-1 ^  6 = 1, 2 , .  -  .  

This fact implies that the cycle processing time of the net corresponds to the max­

imum circuit processing time of the net. The resulting fact is formally proven in 

Chapter 5. 

In this section, differences between the real time simulation and the event 

simulation have been discussed. Also, the methodologies to decompose the STPPN 

model into an infinite number of states has been developed. By using methodologies 

and knowledges gained so far, the algorithm to simulate the system behavior can 

be developed. This algorithm can be easily extended from the real time simulation 

algorithm developed in Chapter 2. Next, the algorithm is introduced. 
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4.5 Event Time Simulation Algorithm 

Step 1: Construct initial markings, Ma and and the time vector^, W^. 

Step 2: Construct the transition set enabled by Ma-

T'y = is enabled by Ma} • 

Step 3: If Ty is empty, then 

Step 3.1: Find the minimum lu* from all positive elements of Wi-

w* = min{wi ,  u'2, •  •  • ,  Wp}, Wp{> 0) G Wi . 

Step 3.2: Subtract w* time units from all positive elements of Wi.  

^'•'k '— *&(> 0) G Wi . 

Step 3.3: If equals to zero, then 

i^ i )k  -  1 

{ma)}^ <— + 1 . 

Step 4: If Ty is non-empty, then select ts  E Tj;  hy  transition selection rules. 

Step 5: For all in{ts}, 

nia "— nia ~ 1 • 

Step 6: For all out{ts} ,  determine from the processing time distributions. 

Step 7: If then 

nia •— ma + I • 

'The vector represents the time left to serve. 
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Otherwise, 

Wi — + and 

Step 8: Repeat Steps (2)-(7). 
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5 SIMULATION 

5.1 Introduction 

In the previous three chapters, systems of interest were modeled and their 

characteristics were discussed from several points of view. In this chapter, the 

basic needs required to simulate the underlying C'^ models in order to analyze their 

effectiveness are established. 

Before analyzing the behavior of the model, it is necessary to analyze how 

different operations take place in the process. To do this. Section 5.2 analyzes 

concurrent and sequential operations in the system. Also, in order to evaluate and 

compare the relative performance of each underlying system, three major measures 

of system effectiveness (MOEs): (1) the average cycle processing time, (2) the 

maximum system throughput rate, and (3) the average response time are derived 

and their relations are discussed in Section 5.3. 

In Section 5.4, when defense is made against the threats of the counterforce, 

assumptions required to evaluate and to compare the underlying 6'^ models are 

presented. Also, parameters characterizing models are defined. In addition to these, 

changes of system parameter values due to changes of system structures by internal 

and/or external shocks such as hit by attacks of the counterforce and malfunction of 

hardware are discussed. In simulating these models, the two following assumptions 
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are taken. First, no task performing errors and communication errors exist between 

processes. Second, the communication time between processes is neglected ^ when 

processing times are considered. 

Finally, inputs required to simulate two STPPN models are prepared. Changes 

of parameter values according to changes of system structure due to shocks are 

considered and discussed. 

5.2 Analysis of Concurrent and Sequential Processes 

The dynamic behavior of the model can be analyzed by considering the process 

sequence in the model. Therefore, finding a way to track the operation sequence of 

the process in the system is very important in the analysis of its behavior, partly 

through the transformations of the STPPN discussed in Chapter 4. The precise 

sequence of operations in the process is indeed determined completely by the system 

structure of the net because the structure of the Petri net characterizes the causality 

of the system. Therefore, an operation (a place) can be said to be concurrent if its 

processing is independent, whereas an operation is said to be sequential if it must be 

performed before other operations. Apart from task processing times and capacity 

possessed, this partial order in the different operations is clearly a determinant 

factor of the firing schedule. 

^Practically, the communication time between two combat units (C^ processes) 
is very little in comparison with the task processing time due to the aid of highly 
developed electronic communication devices. 
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5.2.1 Slices and lines 

As stated in Subsection 2.2.1, the places of the Petri Net that contain a positive 

number of tokens is called marked places. Assume there are no initial marked places 

in the net, i.e., no capacity places exist, and denote the input transition of the net, 

as a set, . Assuming that fires, let be the resulting set of marked places, 

which are also the output places of Then, P-y is Pi = {p-y, P2' P3' P4' (see 

Figure 5.1). Let T2 be the set of transitions enabled by P^ and assume that all 

the transitions of T2 fire, then the next set of marked places is P2 = {pg, P7, pg}. 

Similarly, Tg will be the set of transitions enabled by P2, etc. By iterating this 

procedure, a sequence Tj, Tg, • • •, Is such that Ts = is finally constructed. 

The resulting sets, what is called sl ice  sets ,  of the model in the Figure 5.1 are: 

Tl = { 1}' Pi = {Pl, P2' P3' P4' 
T2 = { 2' *3}' P2 = {P6' P7' P8' pg} 

^3 = { 4' ^5' ^s}' Ps = {pio,Pll, P14} 
TA = { e}' P4 = {P12,P15} 
T5 = { 7' fg}' P5 = {pi3' Pie) 
Te = { IQ}' P6 = {P17,Pig} 
Tj = { 11' ^12}' Pi = {P19' P20} 
Ts = { 13}' P% = {P2l} 
T9 = { 14}' P9 = {P22} 

TlO — ^15}' PlO = {P24} 
Tn = ^le}' Pll = {P25} 

Ti2 
= 

^17}' P\2 = {P26} 

TlS 
= fig}, Pl3 = {P28' P29} 

Tu = ^19' ^20}' Pu = {P30'P3l} 
TI5 

= 
^21' ^22}' Pl5 = {P32'P33} 

TIQ — ^23' ^24}' P16 = {P35' P36' P42} 
Til 

= 
'25}, Pll = {P37} 

TI8 — ^26}' P18 = {P38} 

TI9 — ^27}' Pl9 = {P40} 

T20 
= • 

'28} • 
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/'45 ^29 P46^30 P;23 

<^11 f l9  P21 P22 

"QPir ^^P20 Ç-JI 

NT '3K P-18 '32^N9 ^33^27 

rOVK>rb<>+<>  ̂
O-HQ^ HDH-'O-t 

P50i34 P51 '35_P52/'36 P34 

^19 P30 '21 P32 I '6 PI 3 

±ÇTt2É5±2  ̂
'37 P34 '38 P39 

P40 '28 <3_P9 P Z i .  '26_P38 

P55 '3^^P56^ ' 

'20.P31.'22 P33 

P57 I'41 /-NP58 I'42 P43 

Figure 5.1: STPPN" model of a system 
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Next, the dependency and the independency of the sequence {Tj}, i  = !,•••, s, 

are analyzed. 

Let < denote the partial order relation and nj  be any two nodes (places or 

transitions) of the net, then 

n.j^ < nj if and only if there exists a directed path going from n.^ to n j .  

Naturally, the above relation is consistent, since the net has no directed circuits, 

i.e., the net is acyclical and thus no direct path satisfying < nj and n.^ > nj 

exists. 

Line: A l ine  is a set L of nodes such that 

(1) For any two nodes E L,  nj  G L,  

ni  < ri j  or ri j  < .  

(2) L is maximal if and only if there does not exist a node in the 

net  sa t i s fy ing  (1) ,  not  be longing  to  L.  

Slice A sl ice  is a set S of nodes such that 

(1) For any two nodes G S,  nj  G 5, 

ni  ^  nj  or nj  ^  .  

(2) S is maximal if and only if there does not exist a node nf^ in the 

net  sa t i s fy ing  (1) ,  not  be longing  to  S.  

Clearly, the elements of a slice are independent with respect to <. Therefore, 

they characterize the concurrent activities of the process. In contrast, the elements 

of a line are strictly dependent and thus they characterize the sequential activities 

of the process. In this thesis, only slices are of interest since they are needed to 

determine the concurrent tasks in the process. 
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5.2.2 Characteristics of slices 

Slices have several characteristics which are useful for analyzing the STPPN. 

In this subsection, with descriptions of the slice characteristics, methodologies to 

analyze the model by using them are discussed. 

First, the sequence of the slices T2, - -, Ts represents the steps of the proc­

ess with the places that process concurrently at each step. The order of these slices 

determines precisely the partial order between the various processing tasks in the 

following sense. If a line is considered, then each place on the line belongs to a 

different slice. Therefore, each place is processed according to the order of corre­

sponding slices, which corresponds to the order in which the places are processed 

in the sequential subprocess. Therefore, by using this property, the firing sequence 

can be obtained easily. 

Second, slices determine the maximum capacity available to a process or the 

system itself. Since a slice consists of processes executed concurrently, all processes 

in a slices operate with information transferred from the same input. For instance, 

in i .gure 5.1, if Pi is performing now, it implies that pg possess tokens. 

However, the tokens in those processes are actually originated from Tj, although 

the information brought by them is different to the original one, i.e., they were 

created from the same token. Also, there is no way for places in P2 to have tokens 

before transitions in T2 is processed. Therefore, the number of slices characterizes 

the upper bound of the system capacity. In other words, the number of slices implies 

the maximum number of tasks capable of being processed in the system at certain 

instant. 

Finally, since the processes in a slices occur asynchronously in real time and the 
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set of slices determines the execution order of the processes, it is possible to identify 

which process takes place at the latest instant, compared to other concurrent tasks 

in the same slice. In fact, this process is critical for the processing delay. Therefore, 

the model effectiveness can be improved by reducing its processing time. 

5.3 Derivations of MOEs 

This section develops three major measures of system effectiveness: (1) the 

average cycle processing time, (2) the maximum system throughput rate, and (3) 

the average response time. In deriving measures, the conflict situations are not 

considered since the underlying models dealt with in this thesis are conflict-free as 

seen in Figures 3.7 and 3.8. 

5.3.1 Average cycle processing time, B 

In this subsection, the average cycle processing time is considered. Intuitively, 

the average cycle processing time is the same for all transitions and places in the 

cycle. Assume that the processing starts at < = 0 and then occurs repetitively. 

Denote the instant of time at which the transition initiates its firing, with 

correspondence to the processing occurrence of task assigned to out{t^} as Sp. 

Then, (5" — naturally represents the time that has elapsed between the 

(n —1)^^ and firing of transition This can be interpreted as a cycle processing 

time with transition Ij because the cycle is assumed to be consistent and each cycle 

corresponds to the complete processing of one input. Therefore, the average cycle 

processing time can be defined as follows. 
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Definition: The average cycle processing time of transition 6^, is defined as 

- sf-1) 

' n-H-oo n 

The above equation can actually be rewritten in a more simple form, 

_ _±_ 
\  n n 

9: = lim 

Since is constant (assumed to be zero), 

30 
lim —^ = 0 . 

n —*00 n 

Thus, 
SV' 

6: = lim —^ 
'  n—00 n 

Next, it is proved that all the transitions (or places) have the same average 

cycle processing times. 

theorem 5.1 =  d j ,  f o r  a l l  i  a n d  j  s u c h  t h a t  i, j  E I  and i  ^  j,  where I  is the 

set of transitions in the cycle. 

Proof Let t^ and t j  be any two transitions in the cycle, then there exists at least 

one directed path (or a circuit) that contains both transitions because the cycle is 

strongly connected. Without loss of generality, the circuit can be denoted by 

Because the circuit is conflict-free, each place of the circuit has exactly one input 

and one output transition. Also, the marking of the circuit becomes invariant by 

transition firings. Let denote the initial marking of place and iV?- and Njj^ 
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denote the number of tokens in the places initially belonging to the path from to 

tj and from tj to then 

N f -  =  f  M f ,  N j i  =  ' f :  M f  .  
1=1 l=j+l 

Here, transition firings must be taken into consideration. Previously, a transition 

firing time is assumed to be zero because it is indeed trivial in comparison with a 

task processing time. However, there exist slight differences between initiations and 

terminations of transition firings. Denote the number of initiations and terminations 

of transition in the time interval [0, t] by and respectively. Assume 

that the processing begins at / = 0 and thus, no places are processed. Then at any 

instant t ,  

m  >  T i ( i )  , (5.2) 

I j { t )  >  T j ( t )  .  (5.3) 

Since the initiation of a transition takes one token from its input places and adds 

one token to its output places, for the transitions and tj at any instant /, 

m  <  N f i  +  T j ( t ) ,  I j ( t )  < N ^ J  + Ti(() . (5.4) 

From equations (5.2) and (5.4), 

/;(') - 'V/i < /;(<) • (5.5) 

From equations (5.2) and (5.5), 

/ ; ( ' )  +  >  I j ( t )  •  (5.6) 
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Consider the instant of time t  as 

n+M-
'  = Si " . 

where n is any positive integer. Then, at this instant, 

Ii(t) = n + iV?; . 

Adding equation (5.7) to equation (5.5) yields 

I j { i )  >  n  ,  

which implies that 
n + N f ,  

J 

Likewise, consider the instant of time, 

Sj < S- •" (= i) 

77 — 
t  = S; 

where n is assumed to be greater than . Then 

. 
and adding equation (5.8) to equation (5.6) yields 

I j{ t )  <  n ,  

which implies that 

SJ > s.  ' '  (= t) .  

Finally, for any positive integer n, such that n > Nf-, 

J' 
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Hence, dividing by n and multiplying {n - ) and (n — .Vj^) 

for the first and the last term, respectively, then 

, 

n n — .Vf; n n n Nf-
V V ^ 

Taking the limits as n goes to infinity. 

n- VP. ni-:V^-

Urn _ ,im 2 < Hm ^ , 
n—"X/ n /Î — A • • 'Î—'X. n n — oc n n — • 

J ^ 

which means exactlv. 

$l _ $• 

and thus 0^ = Bj . Q.E.D. 

5.3.2 Average circuit processing time. a(6) 

In the previous subsection, it has been proven that any two transitions in a 

directed circuit have the same average cycle processing time. Now it is possible to 

determine what this measure would be, assuming that the circuit functions inde­

pendently of the remaining system. The directed circuit shown in Figure 5.2 is 

denoted by 6^ = Assume that the circuit has only one token 

in it. which is initially in place p^-. i  = 1. • • •, A.- and initially active, then the proc­

essing time of place pi can take an infinite number of values, 

Uj^ = It I '  0 < u < oo .  

according to the continuous probability distribution. 

f i t  
/fr(ii) = f{,vi)dxi. 0 < ii < oo . 
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h 

(3 

Figure 5.2: Example of directed circuit 

since the token content of the circuit is assumed to be one, the expected processing 

time of pj can be denoted as 

fOO 
H = ^ . (5.9) 

It turns out that the circuit processing time, i.e., the amount of time it takes for 

the token to complete the entire process of the circuit, takes values 

u { 8 )  = u-y — uo -r ^  .  

Therefore, the expected circuit processing time can be represented as 

k 

1=1 

assuming that all place processing times are non-deterministic and have independent 

probability distributions. Likewise, assumed that there are n tokens in the circuit, 

then under the given assumption that the probability distribution is independent 
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from one token to the next as stated in Section 2.2.1, the average circuit processing 

time would be 

a(^) = \  n < k .  (5.10) 

5.3.3 Maximum average circuit processing time, a 

In the previous section, the fundamental assumption has been taken that there 

is no time delay between the different processing operations because a circuit is 

assumed to be isolated from the net. Therefore, the average processing time stated 

above does not consider the firing delays. 

Now consider the net as a whole. It is quite clear that the circuit is inter­

connected with the other. Therefore, it turns out that the interconnected circuits 

affect each other in processing times, as stated in Section 4.4. For example, in 

Figure 5.2, transition ti belongs to both circuits 6-^ and Clearly, the average 

cycle processing time of this transition cannot be lower than the maximum of 

and a(#2), which are the average circuit processing time of each circuit. Indeed, 

in order for transition ti to fire, both tokens in places pi and P2 should be active. 

Also, as shown in Section 5.2.1, the average cycle processing time 0 is the same for 

all transitions in the cycle. Therefore, the intuitive result that 6 cannot be lower 

than any average circuit processing times in the cycle can be obtained, i.e., 

where r denotes the number of directed circuits in the cycle. 

Definition: Let 6^, ^2) ' • • i denote all the directed circuits of the net, then the 
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^1 

Figure 5.3: Example of interrelated directed circuits 

maximum average circuit processing time is defined as 

a = q(^2)'• • • • "(ôV)} , (5.11) 

where is the average processing time of circuit 6^, as defined by equation 

(5.10). Also, the minimum average processing rate can be easily obtained by taking 

inverse of a, i.e.. 

Note that the minimum is taken over all the directed circuits in the net. 

Now, the fact that the average cycle processing time cannot be lower than the 

maximum circuit processing time will be proven. 

theorem 5.2 The maximum average circuit processing time is a lower bound of 

the average cycle processing time, i .e. ,  6 > a. 
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Proof In order to prove the above theorem, it is sufficient to prove that, for any 

d i r e c t e d  c i r c u i t  S o f  t h e  n e t ,  d >  a{6) .  

Let 6 be any directed circuit denoted by 5 = ''^i'Pi^i+1 ' 

Consider the sequence S p  ( n  =  1, 2, 3 • • •) corresponding to the instant at which 

transition fires successively. Now, consider any pair of successive transitions 

(t^, ii^i) of the circuit that are connected by place p^. Then, equations (5.2) and 

(5.3) can be applied for so that ,  at  any instant t ,  

where denotes the initial marking of place pi at time t  = 0. 

Now consider the instant of time, 

n - M f  
i — S- + Uj , 

where n is any positive integer, such that n > and is the random processing 

time of Pi such that > 0. Then, 

4+i(^) < + rx<) (5.12) 

TXO = " - . 

Using equation (5.12) yields, 

4+l(^) ^ " 

which implies 

(5.13) 

Now, by iterating equation (5.13) from i  = 1 to i  = k, 

(5.14) 



www.manaraa.com

103 

where M ° { è )  = and . 

Since 5^ = equation (5.14) becomes 

Sf >  +  u i S )  .  (5.15) 

Meanwhile, assume the processing starts at place , the number of firing of 

transition ti, n, is determined by 

n =  a M ° { 8 )  + 6, 0 < a < n, 0 < 6 < M ° { 8 )  ,  

where a, b denote the number of processing occurrences of place pi and the number 

of tokens which are not initially in respectively. That is, all tokens in the circuit 

must pass through transition ti once they reach to for the first time. 

By i terating equation (5.15) for n = b + M°{8), • • • ,  6 + aM'^{8), 

+ au(<5) , (5.16) 

By dividing equation (5.16) by n, 

£l > £i +  ̂, 
n n n 

s'i - . _ 
Sinc6 lirn,/^—^oo — 0 3,ncl CL — 

Urn > lim !l+ lim 
n-^oo n ' n^oo n n-n-oo n 

e > 0+ 
M'>{8) '  

when n goes to infinity. 

Taking expectations on both sides, 

^1"!  ̂̂  • 
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E [ e \  >  a { S )  .  (5.17) 

Q.E.D. 

5.3.4 Maximum throughput rate, $ 

In the previous section , it has been shown that the maximum circuit processing 

time is a lower bound of the average cycle processing time. Since the throughput 

rate is defined as the inverse of the average cycle processing time, these results can 

be interpreted as follows. The throughput rate of the system, $ = is bounded 

from above by the minimum average circuit processing rate, Now, the problem 

is whether this bound is actually achievable. In other words, whether the minimum 

average circuit processing rate characterizes the maximum throughput rate of the 

system must be determined. It is clear that if the arrival rate of external inputs 

(i.e., arrival rate of the enemy's attack) is low enough, the system will be able to 

handle all the arriving inputs. Thus, the throughput rate will be precisely the rate 

at the arriving inputs since the detection rate of the enemy's attack is assumed to be 

equal to the arrival rate of the enemy's attack in the underlying models. However, 

there is a rate above which the system will be overloaded in the sense that inputs 

will queue at the entry of the system. This queue will increase without limits over 

time. This rate characterizes the maximum throughput rate of the system. 

Here, a consideration must be taken. So far, the analysis has been based on 

the assumption that the initialization of a transition is slightly different to the 

termination of the corresponding transition. However, as assumed in Chapter 2, 

transition times are practically the same and have zero processing times. Therefore, 
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it can be stated that the minimum circuit processing rate determines the maximum 

throughput rate. 

theorem 5.3 The minimum average circuit processing rate determines the maxi­

mum throughput rate, i .e. ,  0 = • 

This theorem make it easy to compute the maximum throughput rate, once all 

simple, directed circuits of the system are found. In order to determine all simple, 

directed circuits, Martinez and Silva's algorithm [44] is used. The algorithm is 

described in Appendix A of the thesis. 

As described earlier, the time and capacity constraints are related to the per­

formance evaluation of the system. Next, how these constraints are connected to 

the maximum throughput rate is analyzed. 

Definition: A circuit is called critical, if its average processing time is maximal 

over all the simple, directed circuits in the net, i.e., 

a:(S^) = r?iax{a(S-i), •••, a(6r)} • 

However, the critical circuits are not necessarily the same since the processing times 

are non-deterministic. Therefore, the maximum throughput rate can be determined 

by averaging the processing times of critical circuits over the probability distribu­

tions. 

This fact provides a way for determining which time and capacity constraints 

are actually binding. Indeed, there are task processing time (capacities) that corre­

spond to the places (token content) of the critical circuits. Therefore, the problem of 

modifying the right constraints to improve the maximum throughput rate becomes 
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straightforward. That is, since the maximum throughput rate has a lower^ and an 

upper bounds. The upper bound is given by ^ from the above analysis. Therefore, 

if the information arrival (attack) rate exceeds the upper bound, it can be sure that 

the system will be overloaded. In the reverse case, the system will be able to handle 

all arrival information. Therefore, by determining the critical circuits of different 

system structures, comparative studies of system effectiveness can be achieved with 

respect to the maximum throughput rates. 

5.3.5 Average response time, RT 

In the previous section, the maximum throughput rate as a function of the 

constraints, the processing time and the capacity, has been derived. In this section, 

the average response time characterizing the dynamic behavior of the system is 

discussed. In order to derive this measure, the firing sequence which has been 

introduced in Chapter 4 will be discussed. The firing sequence indicates the instant 

times at which the various operations occur in the process for allowable rates of 

incoming inputs. Naturally, the precise firing schedule can only be determined for 

the deterministic process. However, since this thesis deals with non-deterministic 

process, the only way to analyze this process is to take average processing times 

and to treat them as a deterministic process. 

5.3.5.1 Feasible firing sequences Firing sequences are feasible if only if 

the transition can be fired as soon as the corresponding transition is enabled. As 

"The lower bound of the maximum throughput rate is trivially obtained by 
assigning each places its worst. But in reality, the lower bound is determined in 
accordance with the requirement assigned when the system is designed. 
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stated in Section 2.2, the enabled transition is defined as the transition that has 

active tokens in all its input places. However, if the output places of the transitions 

are still processing when the transition is enabled, there is no place for tokens in 

input places to move out. Hence, the transition cannot fire until the processing 

of its output place is terminated. Therefore, in order for the firing sequence to be 

feasible, the definition of enabled transition should be modified as follows. 

Definition: A transition is said to be enabled if and only if tokens in all input 

places of a transition are active and there are no tokens in its output places. Now, 

the definition of feasible firing sequence used by Ramchandani [57] can be directly 

used. 

theorem 5.4 The firing sequence is feasible if  and only if  

s  J '•' > 5f + Hj 

and 

gn+l > s]» + bJ: ,  
J 

where Sp is the f iring time of transition t^,  ujj  is the actual processing time^ 

with transitions t j  as its input transition and output transition, respectively. 

M^j is the number of tokens in place p^j initially,  and uj,  is the output place of 

t r a n s i t i o n  t j .  

The first relation is intuitively clear. Transition t j  yields n tokens in place pj^j 

and transition tj takes n -f M^j tokens from place pjj. Therefore, Sj should 

^As pointed out in Section 4.4, ii,j is either the processing time assigned exter­
nally or the waiting time due to delay of processing of next places, both. 
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necessarily be processed after + ujj because p^j initially has only tokens. 

This relation provides an easy way to compute the firing sequence. If the transition 

tj has r input places, p^^, , - • •, p^^, then the relation can be represented as 

n + M P  
; '•k 
>j - -i ' 

Meanwhile, the transition cannot be fired if its output places are executing. There­

fore, the only way to fire the transition is to wait until the processes of its output 

places are terminated and thus tokens in them are moved- out. In this case, it can 

be treated as if the transition is self-looped by these places. The second relation 

represents this fact. 

Here, if the number of repetition n is large enough an so n > then 

equation (5.18) can be rewritten as 

n-M^ • 
.9? >5".^ for & = l,...,r 

and 
7 1 

S] = • (5.19) 

Now, if n < Mf • for some k, k G {1, 2, - - -, r}, then the equation still holds 
' ' fcJ 

except that the corresponding value of k is not considered, which means that the 

corresponding places pi^j have still strictly positive marking and thus, these places 

d o  n o t  d i s a b l e  t r a n s i t i o n  t j .  

Equation (5.19) turns out to be an implicit equation, which permits the compu­

tation of the firing sequence by iteration on the number of firing repetitions. If the 

initial markings of all input places are strictly positive, then for all transitions in 

the system can be easily obtained. However, it is not the case of the system in this 
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thesis. As previously seen in the corresponding STPPN model, since only the 

capacity places have a non-null initial marking, 5" should be determined in order 

to compute for a pair of transitions, tj). This implies that the computation 

of Sj for all the transitions in the model should be carried out according to the 

firing order. As stated in Section 4.4, this order is characterized by the slices of the 

model. 

Consider any successive transitions tj and t j  connected by p^j . Then, it belongs 

to a line, since < Sj trivially and both transitions are elements of two different 

slices, say Ta and T),, respectively. Since the slice reflects the partial order between 

the transitions, necessarily a < b. Thus, if the instants of firings of all the 

transitions belonging to slices T^, T2, ' ' ', '^k — 1 been determined, then the 

firing instants of transitions in slice T^, can be derived by using equation (5.19). 

Now, consider 5" corresponding to T^. If the last transition denotes im, then by 

applying equation (5.19) the firing instant of transition is 

The computation order of S j ,  for j = 1, 2, • • •, m is determined by the partial order 

obtained from the slice set. Note that for the transitions belonging to the same slice, 

the firing order has no importance because the transitions fire concurrently. 

5.3.5.2 Derivation of average response time Denote 

= % + % • 

where T^^ is the instant of the firing instant of transition tni, which is the output 

transition of the model. Each time the tm fires indicates the instant that the model 
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has completed the processing of an input and has produced its response. As already 

assumed, since all inputs arrive simultaneously at time zero and wait their turns, 

for A: = 1, 2, • • •, n, the instant of time at which the whole processing of the 

input is terminated, represents the response time of the system. It also represents 

the dynamic behavior of the system. Therefore, the average response time can be 

defined as 

RT = lim ^ = lim . (5.20) 
n—>oo n n-^oo n 

From Section 5.3, it will be realized that this limit is precisely equal to the maximum 

cycle processing time which is also equal to 1/$. 

5.4 Model Assumptions and Parameters 

In this section, assumptions and parameters of the underlying STPPN models 

required to simulate are presented. 

5.4.1 Model assumptions 

In general, a scenario is needed in order to simulate a battle situation. The 

typical combat scenario used in this thesis is as follows. (1) The battle starts at time 

zero, i.e., detection of the enemy's threats is initially available. (2) The battle is 

terminated if the model state reaches one of the cases in Table 5.1. (3) In model C, 

if the battle unit is hit by attacks of the enemy, or if the combat unit malfunctions 

due to some internal reasons, then the unit has no more action and is ruled out 

from the system structure. Thus, the system structure is changed"^ (see Appendix 

B) and an extra burden is assigned to each unit according to the rules of the role 

''Quantity of extra burden for the surviving units is driven in the next subsection. 
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Table 5.1: States conditions terminating system operations 

Cases I Conditions 

1 1 ' Commander and CIC is destroyed or malfunction. 
2 i Any combat unit, for instance, all BGs, except i 

' ; Commander and CIC is destroyed. | 
; ; Over 50% of total combat units are destroyed and/or ! 
; 3 I malfunction, i.e., 

the number of killed combat units > (a + a6 + c) / 2. . 

change as shown in Table 5.2 and Table 5.3. (4) The survivability of each unit is 

initially equal, i.e.. survivability of each unit. P.^. is defined as 

Pg = i -  Hit probability. P/j . 

Therefore, the initial survivability is 

Ps = ^ 
2 — a T ab ~ c 

And the survivability of each unit decreases as the engagement continues, i.e., the 

survivability of each unit at time t can be deduced as 

= y _ ^ 1 z- < y- 0 < t < -x) .  

where .V is the total number of units in the system initially and h denotes the total 

number of destroyed units in time interval (0, t), 0 < i < oc. 

5.4.2 Model parameters 

In order to simulate the underlying models, two parameters, the capacity and 

task processing times of each combat unit, should be defined. These parameters 

change their values according to the rules defined in Table 5.2. As an illustra­

tion, two examples are introduced. Suppose that Commander function is destroyed 
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Table 5.2: Role changes of each combat unit 

Rules i Conditions \ Remedies 
1 Commander is i CIC has an additional role of Commander. 

1 i destroyed. i Therefore, task processing time of CIC 
1 increases and its Q should change. 

1 
i CIC is 

2 j destroyed, 

1 
1 

1 BG has an additional role of CIC. Therefore, 
the task processing time of the BG 
increases, and its Q should changes. 
Processing times of the rest of the BGs 
increase, but the Qs do not change. 

3 

1 

k BGs are 
destroyed. 

Since the rest BGs have extra burdens, 
task processing times of (a-k) BGs 
increase, but the capacity of each unit 
does not change. 

j 1 Since the rest of SBGs have extra burdens, 
4 ! k SBGs are | task processing times of (ab-k) SBGs j 

j destroyed. • increase, but the capacity of each unit j 
1 1 does not changed. j 

5 

• 

} Since the rest of IBGs have extra burdens, 
k IBGs are ' task processing times of (c-k) IBGs 
destroyed. ! increase, but the capacity of each unit 

1 does not change. 



www.manaraa.com

113 

and/or malfunctions. Then, according to rule 1, CIC performs Commander's task. 

Therefore, the processing time of CIC, lidci increases to i.e., 

^^cic = «1 * {^^cic + A^cmc/)' 1 < «1 . 

where denotes a weight factor and /u^- denotes the processing time of combat 

unit. 

Also, the capacity of CIC, Qdc changes to i.e., 

Qcic ~ Qcic) • 

Meanwhile, suppose that one BG is destroyed. Then, according to rule 3, the 

rest of the BGs have an extra burden. Therefore, their processing times change to 

f  a*  
l^bg = ^^4 * 1 < "4 < ' 

where denotes the weight factor and a* is the total number of survived units 

in the previous state. However, the capacity of each BG does not change. By the 

same methods, processing times and Qs for all possible cases^ can be obtained (see 

Table 5.3). 

5.5 Model Inputs 

This section deals with model inputs required to simulate the evolution of the 

underlying C'^ STPPN models. 

^Total of 17 cases are considered. 
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5.5.1 Force powers 

Since it is assumed that a surface-to-air battle is held at an air-base and the 

underlying system defends its base, the first thing to be considered is the size of 

power on both sides. 

In this thesis, five sorties and the total of fifteen attacks are assigned for offen­

sive power. As defensive power, one CMD, one CIC, four BGs, twelve SBGs, and 

two IBGs are prepared. 

5.5.2 Processing time 

Subprocesses in each process take time to perform their assigned tasks. 

As mentioned in Chapter 1, they are assumed to be random and distributed expo­

nentially with mean /li, (Table 5.4). Note that as previously mentioned, processing 

times of dummy processes and places which indicate capacities are set to zero. 

5.5.3 System and process capacities 

Since models studied in this thesis are assumed to be safe, each place (subpro-

cess and dummy process) can contain only one token at a time. Maximum capacity 

of each 6'^ process can be easily obtained from the model structure. For example, 

since Commander unit in Model N has only 3 subprocesses, its capacity is maxi­

mum three. The capacities of the other process also can be obtained by this way. 

(See Table 5.5.) On the other hand, in the case where the capacity exceeds one, it 

destroys the safeness assumption. Therefore, in order to retain this assumption, 

the model developed in Chapter 2 should be reconstructed. It is very simple. Using 

the extension theory of petri net, the model can be constructed without destroying 
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Figure 5.4: Modeling of place capacity 

the original structure by connecting extra places into the corresponding capacity 

place, i.e., if the capacity of a process is three, then two extra places are connected 

to the corresponding places as shown in Figure 5.3. In this thesis, for simplicity, the 

system capacity is restricted to maximum three, i.e., the system can treat maximum 

three information simultaneously. 

5.5.4 Weight factors 

Weight factors used to adjust the processing times due to the destruction of a 

combat unit are assumed to be constant and their values are given in Table 5.6. 
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Table 5.3: Changes of parameter values by cases 

i Cases 1 Capacities 1 Processing time | Hit Pr. 

1 ^'cic = ^cic) i "de = «1 *("cm(i + "dc)' 

j 1 ̂  (^1 ( N - 1 )  

2 

1 %c2c = °=2 * ("de H g ) ^  

Q'cic = ^^^(Qdc, Q b g )  •  1 <  «2 

Qbg = Qbg "6g =«3* "6g' 

! 1< "3 s a' > 1 

1 

( N - l )  

i 

3 
1 

no change 

u l g = a ^ ^ u ^ g ,  

1 < 0!4 < , (iV-I) 

a* >1 1 

4 no change 1 < *5 - (a6*-l)' 
a6* > l 

1 ! 
{ N - k )  

5 no change 

"•6g = «6 * ̂ ibg 

1 < «6 ^ (c*-l)' 
c* > 1 

1 
{ N - k )  
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Table 5.3: (Continued) 

1 Cases Capacities & Processing time 1 Hit Pr. 

1 6 Case lu Case 3 | l/{# — [k 1)} 
7 Case lUCase 4 1 / { N  - { k  +  1 ) }  
8 Case lUCase 5 l/{jV -(k-1)} 
9 Case 2UCase 3 j 1/{7V — (6 4- 1)} 

10 Case 2UCase 4 l / { N - { k - ^ l ) }  
11 Case 2UCase 5 j l/{iV — (fc-t-1)} 1 
12 ! Case lUCase SUCase 4 i 1 / { N  —  (Ag 1^4 -f 1)} 
13 Case lUCase 3UCase 5 i l/{jV — 4- kt:^ -j- 1)} 
14 Case lu Case 4UCAse 5 j l/{# — (64 -t- k;^ + 1)} 
15 ! Case 2UCase 3uCase 4 ' 1 / { N  — (Ag -i- ^4 -t- 1)} 
16 i Case 2uCase 3uCase 5 i 1/{^V — (k^ -r k^ -r 1)} j 
17 Case 2UCase 4UGase 5 ! 1 / { N  —  (A;4 -r A5 4- 1)} | 

Table 5.4: Processing times of subprocesses 

1 Process il | 2 | 3 | 4 5 | 6 7 18 19 10 

Proc. time il | 1 I 1 il 1 i 5 0 8 ! 5 0 

Process 1 11 1 12 1 13 1 14 | 15 1 16 | 17 18 1 19 1 20 

: Proc. time 1 8 | 0 15 iO |0 ! 0 5 0 1 0 1 8 

i Process 21 j 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 | 30 

! Proc. time | 5 10 0 1 0 2 10 1 0 0 ! 0 1 2 

1 Process 31 | 32 | 33 1 34 35 1 36 1 37 38 1 39 1 40 1 

j Proc. time 10 2 10 ! 0 0 2 10 1 0 10 1 3 1 

1 Process 41 1 42 43 1 44 1 45 46 47 48 ! 49 50 

1 Proc. time 3 3 0 1 0 0 1 0 • 0 0 1 0 1 G 

i Process ) 51 j 52 53 i 54 55 56 57 58 1 59 

! Proc. time j 0 1 0 0 1 0 j 0 0 0 0 1 0 
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Table 5.5: Maximum system and process capacities 

unit system CMD i BG i SBG 1 IBG 
i capacity 3 4 : 4 1 3 ! 3 

Table 5.6: Weight factors 

a 1 I ^9 0=3 a'I 
1.0 1.0 I a*/(a* - 1) I a"/(a" - 1) ab^jab" - 1) j c*/(c* - 1) 
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6 NUMERICAL ANALYSIS 

6.1 Introduction 

In this chapter, simulation results from two models- model N and model C-

are analyzed and compared. Two measures of effectiveness, the maximum through­

put rate and the dynamic response time, which were derived in Chapter 5, and 

the maximum processing time discussed in Chapter 3, will be used to analyze the 

simulation results. In order to obtain the simulation results, a total of 30 runs for 

model N and a total of 40 runs for model C were carried out. 

The results were analyzed according to the following steps. First, MOE and 

the processing rate for each process are calculated. Second, by analyzing them, 

if a problem exists, then, what kind of problem, and how it can be resolved are 

discussed. Third, after the remedy is taken, the resulting effectiveness is compared 

to the previous one in terms of MOE and the processing rates of processes. 

Finally, by repeating the previous procedures, the model with the best effectiveness 

is selected. 

6.2 Normal Model, N 

In this section, the normal model, N, is analyzed in terms of MOE with various 

inputs. Then, the model structure having the best effectiveness will be determined. 
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The model and its processing circuits are represented in Figure 6.1 and Table 6.1. 

6.2.1 Case 1: Original input 

In this subsection, a normal model with one capacity for each 6'^ process is 

analyzed by using the processing times assigned in Subsection 5.5.2. From Table 6.4, 

the maximum average circuit processing time^ can be directly obtained. 

a = max{a((5i), «(62), • • •, «(%)} 

= max|52.7, 64.2, • • •, 23.5} 

= 80.0 (= «(621)) . 

• Therefore, maximum throughput rate, $, is 

* = " 803 " "'25 • 

Also, the maximum processing rate of each 6'^ process, (/>, is 

a. CMD 

.  f r  1  1  1  1  

" = -"{/T6. =^} 

= min{ ^ z:^} 
^«(^76) "19 "21 "22 

. r J 1 1 l_x 
"^^"^23.5' 8.06' 0.32' 10.13J 

= .0426 (= /yg) • 

b. CIC 

•? = niin{/e8, /72, —, —, —, —} 

^Average circuit processing times are calculated from the program by using the 
statistics in Table 6.3. 
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Figure 6.1: Normal model of the system 
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Table 6.1: Simple directed circuits in Figure 6.1 

• Circuits for place 1. 

h- Pi ^ P19 P21 P22 P24 P25 P26 
P28 P30 P32 P36 P43 • 

02'- Pi —» /?i9 P2\ P22 "* P2A "* P25 P26 
P28 — P30 — P32 P35 ^ P3T — P38 — P40 
P43 • 

53: Pi PIQ — P2i -> P22 — P24 P25 P26 
P29 "" P31 "* P33 P42 P43 • 

• Circuits for place 2. 

<^4= P2 PU ^ PU P19 P21 P22 P2A — 
P25 — P26 — P28 P30 — P32 — P36 ^ P43 • 

^5: P2 P13 PIT P19 P21 — P22 -* P24 — 
P25 "* P26 — P28 P30 P32 P35 P37 
P38 — P40 — P43 • 

6Q'. p2 — P13 — P17 — P19 — P2\ — P22 ^ P24 
P25 "* P26 — P29 ^ P31 ^ P33 ^ P42 P43 • 

h- P2 P13 Pis P20 ^ P21 "* P22 ^ P24 
P25 -* P26 — P28 P30 P32 P36 "* P43 • 

^8= P2 ^ P13 PIS P20 P21 P22 P24 ^ 
P25 — P26 "• P28 —' P30 ^ P32 P3o P37 
P38 P40 ^ P43 • 

h- P2 P13 "* Pis ^ P20 — P21 P22 P24 ^ 
P25 P26 P29 P31 P33 P42 P43 • 
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Table 6.1: (Continued) 

• Circuits for place 3. 

&10: P3 PIO — P12 ^ Pl3 PU Pi9 P21 
P22 P24 "• P2ô "• P26 
P2S P30 P32 — P36 P43 • 

^11= P3 PlO "• P12 P13 PIT P19 P21 ^ 
P22 "* P24 — P2o P26 P28 "* P30 ^ P32 
P35 P37 P38 — P40 — P43 -

^12= P3 PIO — P12 •-* P13 ^ PIT — P19 P21 — 
P22 P24 P25 "• P26 "* P29 P31 "* P33 
P42 P43 • 

^13= P3 PIO ^ Pl2 P13 PIS P20 P21 "" 
P22 P24 "* P25 P26 P28 P30 P32 P36 P43 • 

^14" P3 PlO P12 P13 Pis ^ P20 P21 
P22 P24 ^ P25 P26 P28 P30 — P32 
P35 — P37 — P3S - P40 — P43 -

^15= P3 PIO P12 ^ P13 — PIS — P20 — P21 
P22 P24 "* P2o P26 P29 P31 P33 
P42 "* P43 • 

^16= P3 PlO — P15 ^ P16 PIT — P19 "• P21 — 
P22 P24 P25 — P26 P28 P30 — P32 ^  
P36 P43 • 

^17" P3 PlO Pl5 P16 "* PIT P19 —' P21 
P22 P24 —* P25 P26 P28 P30 P32 "* 
P35 P37 P38 ^ P40 P43 • 

^18" P3 PlO P15 P16 ^ PIT P19 P21 
P22 P24 "* P2o "• P26 ^ P29 P31 P33 
P42 P43 • 

^19- P3 PIO Pi3 PI6 P18 P20 P21 
P22 P24 P25 "* P26 P2S P30 P32 
P36 P43 • 
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Table 6.1: (Continued) 

hO' P3 mo — Pi5 Pie pis — P20 — P21 -* 
P22 -* P24 P2o — P26 P28 P30 -* P32 ^ 
P35 P37 P38 ^ P40 P43 • 

^21= P3 PIO P15 — P16 P18 — P20 "* P21 ^ 
P22 -* P24 P25 P26 P29 ^ P31 ^ P33 
P42 — P43 • 

• Circuits for place 4. 

^22' P4 P8 PlO "• P12 — P13 ^17 Pl9 
P21 P22 P24 — P25 — P26 "* P28 — P30 
P32 P36 N3 • 

<^23" f4 P8 —' PlO P12 P13 ^ PIT Pl9 
P21 P22 P24 ^ P25 P26 ^ P28 ^ P30 
P32 P35 P37 P38 "* P40 P43 • 

^24= P4 P8 PlO P12 — P13 PIT Pl9 ^ 
P21 P22 P24 P25 P26 P29 "* P31 
P33 P42 P43 • 

^23= P4 ^ P8 PlO — P12 P13 P18 P20 
P21 P22 P24 P25 P26 P28 ^ P30 
P32 — P36 — P43 • 

^26= P4 ^ P8 PlO P12 ^ P13 ^ P18 P20 
P21 P22 P24 P25 — P26 P28 — P30 ^ 
P32 — P35 - P37 -* P38 ^ P40 P43 • 

hi- P4 P8 ^ PlO -* P15 — P16 P18 P20 
P21 •"* P22 P24 ^ P25 "* P26 P29 P31 
P33 P42 P43 • 

^28= P4 P8 PlO P12 P13 P17 Pl9 
P21 P22 P24 P25 ^ P26 P28 ^ P30 
P32 P36 ^ P43 • 
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Table 6.1: (Continued) 

SoQ- P4 Pg Pio P12 
P21 — P22 P24 P2o 
P32 — PS5 P37 P38 

ho- P4^ P8 PIO Plô — 
P22 — P24 P25 P26 
P42 — P43 • 

^ 3 1 =  P 4 P 8 P I O P l o  
P21 — P22 — P24 P25 
P32 — P36 — P43 • 

^32= P4 P8 -* PlO P15 
P21 P22 -* P24 P25 ' 
P32 — P35 P37 P38 ' 

^33: P4 P8 PlO P15 
P21 P22 P24 -* P2o • 
P33 — P42 P43 • 

^34: P4 P9 Pll ^ P12 
P21 P22 P24 P25 " 
P32 — P36 P43 • 

ho- P4 P9 Pll P12 -
P21 P22 P24 — P25 
P32 P35 -* P37 -* P38 

^36= P4 -* PQ Pll P12 -
P21 P22 P24 — P25 
P33 P42 ^ P43 • 

637: P4 P9 Pll P12 -
P21 P22 P24 -* P25 
P32 P36 ^ P43 • 

^38= P4 P9 Pll ^ P12 
P21 P22 P24 P25 
P32 P3o P37 P38 

P16 P17 -
P26 "• P28 

- P40 P43 
P16 — PI 7 

P29 P31 

P16 P18 
— poQ — P28 

P16 P18 
P26 ^ P28 

— P40 — P43 
P16 P18 
^ P26 P29 

P13 -* PI 7 
P26 ^ P28 

P13 P17 
P26 P28 

^ P40 P43 
P13 ^ P17 
- P26 — P29 

P13 PI8 
P26 P28 

P19 
P30 -

P19 -*P21 
P33 

P13 "• /'IS 
P26 P28 
P40 —' P43 

P20 
P30 

P20 
^ P30 

P20 — 
P31 

P19 — 
P30 

P19 
P30 • 

P19 
P31 • 

P20 
P30 • 

P20 
- P30 -
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Table 6.1: (Continued) 

^39: PA~* P9 P\l fl2 P13 fl8 P20 
P21 "* P22 "* P2A "* P25 •"* ^26 P29 P31 
P33 — PA2 -* P43 • 

<^40= P4 -* P9 ^ Pll Plo P16 Pn P19 
P21 P22 •"* P24 P2Ô P26 P28 P30 
P32 — P36 P43 • 

^41" P4 P9 ^ Pll "* Plo — P16 — ^17 — P19 — 
P2l P22 "* P24 "• P25 "* f26 — P28 P30 
P32 P35 ~ P37 -* P38 — ^40 P43 • 

^42= PÀ ^ P9 ^ Pll Plo P16 PI7 P19 
P21 —' P22 P24 •"* P2Ô P26 P29 P31 
P33 — P42 ^ P43 • 

^43: P4 P9 Pll Plo P16 P18 P20 
P21 P22 P24 ™ P25 P26 —" P28 ^ P30 ^ 
P32 P36 P43 • 

^44: P4 pg Pll — Plo — P16 —' P18 ^ P20 
P21 P22 ^ P24 — P25 P26 — P28 P30 
P32 P3o — P37 P38 P40 P43 • 

<^45: P4 P9 Pi 1 •"* Plo ^ P16 " P18 P20 
P21 P22 "• P24 P25 P26 P29 "* P31 ^ 
P33 — P42 - P43 • 

• Circuits for place 5. 

^46= Po P6 P13 "* P17 ^ P19 P21 P22 
P24 — P25 — P26 "• P28 ^ P30 ^ P32 P36 
P43 • 
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Table 6.1: (Continued) 

^47: Pô PQ P13 Pi7 P19 P21 /^22 
P24 "• P25 P26 P28 P30 P32 P35 
P37 "* P38 P40 — P43 • 

^48= Pô P6 P13 P17 P19 "* P21 P22 
P24 — P2Ô P26 P29 "* P31 "* P33 P42 
P43 • 

^49: Pô P6 P13 PIS P20 — P21 — P22 
P24 — P25 — P26 "• P28 P30 P32 "* P36 
P43 • 

^50= Pô P6 -- P13 ^ PIS — P20 — P21 — P22 — 
P24 P25 ^ P26 ~ P28 P30 P32 P35 — 
P37 P38 P40 ™ P43 • 

&51: Pô P6 Pi3 PIS — P20 "* P21 P22 
P24 ^ P25 P26 P29 P31 P33 P42 
P43 • 

<^,52= Pô ^ P7 -* P14 - P17 - P19 P21 P22 ^ 
P24 — P25 ^ P26 P28 P30 P32 ^ P36 "* 
P43 • 

^33: Pô -* P7 PU Pi7 — P19 P21 P22 
P24 ^ P2o "• P26 "* P28 ^ P30 P32 "* P35 
P37 — P38 - P40 P43 • 

^54: Pô P7 P14 —' Pl7 ^ P19 P21 P22 — 
P24 — P25 P26 P29 P31 ~ P33 ^ P42 ^ 
P43 • 

^55: Pô -* P7 P14 PIS P20 P21 P22 ^ 
P24 P2o ^ P26 P28 P30 — P32 P36 
P43 • 

he- Pô-* Pi P14 — P18 P20 P21 P22 
P24 P25 — P26 ^ P28 "* P30 P32 —' P35 
P37 ^ P38 P40 P43 • 

hr Pô P7 PU PIS P20 P21 ^ P22 
P24 P25 ^ P26 P29 ^ P31 P33 P42 
P43 • 



www.manaraa.com

128 

Table 6.1: (Continued) 

• Circuits for place 6. 

hs- P6 PU — P17 "* P19 — P2l P22 P24 
P25 P26 P29 ^ P31 P33 P41 — Po6 
^55 • 

<^59= P6 P13 "* P18 P20 "• P21 ^ P22 P24 
P25 — P26 P29 P31 P33 ^^41 ^ P56 — 
P55 • 

<^60= /'T — P14 P17 P19 — P21 — P22 P24 ^ 
P25 P26 P29 "* P31 ^33 ^ ̂ 41 — Po6 
P55 • 

^61= PT P14 — PIS — P20 — P21 — P22 P24 — 
P25 — P26 P29 P31 "* P33 ^ P41 — P56 " 
P55 • 

• Circuits for place 8. 

^62= P8 -* PlO PIS P16 — P17 P19 P21 
P22 P24 P25 P26 P28 P30 ™ P32 
P3o P37 P38 P39 — P54 — P53 • 

<^63= P8 PlO P15 P16 — P18 P20 ^ P21 — 
P22 —' P24 "* P25 P26 P28 P30 P32 "~* 
P35 ^ P37 P38 P39 ^ P54 — P53 • 

• Circuits for place 9. 

^64= P9 PU "* P15 Pl6 Pi7 P19 — P21 
P22 P24 P25 P26 P28 ^ P30 ^ P32 -* 
P35 P37 P38 P39 Po4 — Po3 • 

^60= P9 Pli P15 "• PI6 "* PIS P20 P21 
P22 -* P24 P25 P26 P28 ^ P30 "* P32 "* 
P35 P37 P38 P39 - P54 ^ P53 • 
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Table 6.1: (Continued) 

• Circuits for place 10. 

%= PlO PIS P16 P17 P19 ^ P21 — P22 — 
P24 P25 P26 P28 P30 — P32 -*P34 ~ 
P52 - P51 PoO • 

PlO PIS PI 6 PIS - P20 - P21 — P22 "• 
P24 P2S P26 P2S -* P30 ^ P32 — P34 — 
P52 - P51 - P50 • 

• Circuits for place 13. 

^68= Pl3 — PIT — P19 P21 — P22 — P24 "* P25 
P26 — P27 — P49 P48 — P47 • 

^69= P13 ^ Pi7 Pl9 P21 ^ P22 ^ P24 P25 
P26 -* P28 — P30 P32 P34 PS2 — PSI 
P50 - PlO P12 • 

'70= PI3 - P17 - P19 -* P21 P22 P24 P2S ^ 
P26 — P28 P30 P32 ^ P3S — P37 P38 ^ 
P39 - P54 - P53 P8 PlO —' P12 • 

'71: pi3 -* P17 P19 —' P21 P22 ^ P24 ^ P25 
P26 P28 P30 P32 — P3S — P37 — P38 — 
P39 P54 P53 ^ P9 PU Pi 2 

72 PI 3 — PIS - P20 P21 ^ P22 ^ P24 P2S ^ 
P26 P27 P49 P48 P47 • 

^73= P13 "* PIS "• P20 P21 ^ P22 P24 P25 
P26 P28 P30 ^ P32 ^ P34 ^ Pô2 Pol ^ 
P50 — PlO ^ P12 • 

^74= Pl3 P18 P20 P21 P22 "* P24 — P25 
P26 P28 P30 P32 ^ P35 P37 P38 ^ 
P39 Po4 P53 P8 PlO Pl2 • 

ho- P13 PIS P20 ^ P21 P22 P24 P25 
P26 P28 — P30 ^ P32 ^ P35 P37 P38 ^ 
P39 — P54 -* P53 P9 ^ Pli — Pl2 • 

• Circuits for place 19. 

^76= Pl9 P21 P22 P23 
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c. BG 

0 

d. SBG 

e. IBG 

4> 

•  f  1  1  1 1 1 1  

a(&72)' ^13' ^18' ^25' ^26 
. f 1 1 1 1 1 1 1 

41.9' 8.64' 5.12' 2.02' 10.71 J 

.0223 (= /gg) . 

1 1 1 1  
min{/86, hv /69. /73. g- =^. 

• f 1 1 1 1 1 1 1 
ccf^fln)' 0Y679)' «m' wis' wsn' (%)' «(^07) a(6gg)' 0(673) iqo ((15 "30 

"32 ̂  
. c 1 1 1 1 1 1 1 1 ) 

160.6' 57.6' 64.5' 61.6' 7.17' 4.68' 2.11' 10.37^ 

.0155 (== /gg) . 

1 1 
min{/62, /63' /64' /65' /70' /71' M' /75' 

"38 
• f 1 1 1 1 1 1 

^"•-«((562)' a(&63)' a(^64)' "(%)' «(^70)' "(^7l)' 
1 1 1 1 

0(^74)' a(^75)' "9' Û37' ûgg f 
. , - 1 1 1 1 1 1 1 1 1  

™172.3' 69.3' 70.1' 67.1' 76.2' 74.0' 73.3' 71.1' 4.97' 

—— I 1.98' 9.72f 

.0131 (= /70) . 

11 1 
™n{/58. /59. /60. /61. =^. =^} 
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1 1 1 J_ _1_ J_| 

. r 1 1 1 1 1 1 1 1 
™l57.4' 54.4' 53.9' 51.0' 5.18' 2.01' 10.51 J 

= .0174 (= /gg) . 

The above results indicate that the maximum throughput rate of the system is 

determined only by the structural constraint since is the unique critical circuit 

of the net. Therefore, in this case, two possible remedies to improve the performance 

of the overall net can be considered: either increasing the capacities available to 

the system or reducing the task processing times of its subprocesses or both. 

On one hand, the system with one capacity can can handle only one attack at 

a time no matter how many capacities the other 6'^ processes have. In fact, since 

the number of the system capacity is determined by the model structure, i.e., it can 

be obtained from the number of slices discussed in Subsection 5.2.2. Also, since the 

marking process corresponds to the processing sequence of sHces in the model, the 

maximum system capacity equals the number of slices of the net, i.e., 

max{Qj^j} = the number of slices = 19 . 

Since increasing the capacity of the system allows the system to treat more attacks at 

a time, it yields generally a better model effectiveness. Also, as stated in Subsection 

5.2.2, since the capacity of a process is determined by the structural constraint, each 

process has its own capacity limit. Consequently, assuming that the capacity 

should be increased in order to improve the model effectiveness, it can be increased 

only up to its maximum limit as stated previously. 

On the other hand, the processing time indicates the time required for a person 

or a group assigned previously to perform its task. Thus, the only way to improve 



www.manaraa.com

132 

Table 6.2: Case 1: Task processing history 

1 2 3  4  5  6  7  8  

1  0 .0  92 .9  182 .1  273 .4  371 .1  453 .6  542 .2  633 .0  

2  0 .0  92 .9  182 .1  273 .4  371 .1  453 .6  542 .2  633 .0  

3  0 .0  92 .9  182 .1  273 .4  371 .1  453 .6  542 .2  633 .0  

4  0 .0  92 .9  182 .1  273 .4  371 .1  453 .6  542 .2  633 .0  

5  0 .0  92 .9  182 .1  273 .4  371 .1  453 .6  542 .2  633 .0  

6  1 .0  93 .8  182 .9  274 .4  372 .2  454 .4  543 .3  634 .4  

7  1 .0  93 .8  182 .9  274 .4  372 .2  454 .4  543 .3  634 .4  

8  1 .2  93 .8  182 .9  274 .2  372 .3  454 .8  543 .0  634 .0  

9  1 .2  93 .8  182 .9  274 .2  372 .3  454 .8  543 .0  634 .0  

10  1 .7  94 .3  183 .3  274 .6  372 .6  455 .3  543 .6  634 .5  

11  5 .6  99 .9  188 .4  279 .7  377 .1  460 .0  550 .3  638 .4  

12  9 .8  104 .0  191 .2  283 .9  380 .3  464 .8  554 .0  646 .3  

13  9 .8  104 .0  191 .2  283 .9  380 .3  464 .8  554 .0  646 .5  

14  6 .8  98 .9  189 .9  279 .0  375 .8  460 .1  549 .9  639 .3  

15  9 .8  104 .0  191 .2  283 .9  380 .3  464 .8  554 .0  646 .3  

16  13 .9  108 .7  194 .7  290 .5  384 .0  470 .0  558 .6  651 .5  

17  18 .5  112 .8  204 .3  295 .4  390 .2  476 .8  565 .7  657 .0  

18  18 .5  112 .8  204 .3  295 .4  390 .2  476 .8  565 .7  657 .0  

19  18 .5  112 .8  204 .3  295 .4  390 .2  476 .8  565 .7  657 .0  

20  25 .5  116 .8  211 .6  301 .2  395 .0  481 .2  570 .7  661 .8  

21  29 .6  121 .7  215 .0  306 .2  398 .4  486 .4  575 .1  668 .3  

22  36 .7  126 .6  220 .4  313 .5  402 .7  493 .0  579 .4  672 .5  

23  47 .8  137 .7  230 .8  324 .6  409 .7  503 .0  591 .2  681 .6  

24  47 .8  137 .7  230 .8  324 .6  409 .7  503 .0  591 .2  681 .6  

25  47 .8  137 .7  230 .8  324 .6  409 .7  503 .0  591 .2  681 .6  

26  50 .3  139 .5  232 .0  327 .2  412 .1  505 .5  593 .1  683 .3  

27  61 .9  149 .4  242 .0  339 .3  422 .3  515 .4  605 .8  695 .4  

28  61 .9  149 .4  242 .0  339 .3  422 .3  515 .4  605 .8  695 .4  

29  61 .9  149 .4  242 .0  339 .3  422 .3  515 .4  605 .8  695 .4  

30  61 .9  149 .4  242 .0  339 .3  422 .3  515 .4  605 .8  695 .4  

31  61 .9  149 .4  242 .0  339 .3  422 .3  515 .4  605 .8  695 .4  

32  63 .7  151 .3  243 .3  341 .1  424 .4  517 .5  608 .0  697 .2  

33  63 .9  151 .2  243 .5  341 .0  424 .2  517 .5  608 .3  697 .4  

34  75 .0  161 .4  253 .2  356 .9  434 .9  526 .0  615 .5  707 .3  

35  75 .0  161 .4  253 .2  356 .9  434 .9  526 .0  615 .5  707 .3  

36  75 .0  161 .4  253 .2  356 .9  434 .9  526 .0  615 .5  707 .3  

37  75 .0  161 .4  253 .2  356 .9  434 .9  526 .0  615 .5  707 .3  

38  76 .6  163 .7  255 .3  358 .6  436 .8  528 .1  617 .1  709 .9  

39  88 .3  174 .5  265 .0  366 .7  447 .3  537 .5  624 .9  717 .6  

40  88 .3  174 .5  265 .0  366 .7  447 .3  537 .5  624 .9  717 .6  
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Table 6.2: (Continued) 

1 2 3  4  5  6  7  8  

41  73 .1  163 .5  258 .2  345 .9  435 .3  526 .9  621 .4  706 .6  

42  73 .1  163 .5  258 .2  345 .9  435 .3  526 .9  621 .4  706 .6  

43  92 .9  182 .1  273 .4  371 .1  453 .6  542 .2  633 .0  721 .8  

44  0 .0  92 .9  182 .1  273 .4  371 .1  453 .6  542 .2  633 .0  

59  0 .0  92 .9  182 .1  273 .4  371 .1  453 .6  542 .2  633 .0  

9  10  11  12  13  14  15  

1  721.8  808 .1  899 .4  987 .0  1075 .3  1166 .0  1245 .9  

2  721 .8  808 .1  899 .4  987 .0  1075.3  1166 .0  1245 .9  

3  721 .8  808 .1  899 .4  987 .0  1075.3  1166 .0  1245 .9  

4  721 .8  808 .1  899 .4  987 .0  1075.3  1166 .0  1245 .9  

5  721 .8  808 .1  899 .4  987 .0  1075.3  1166 .0  1245 .9  

6  722 .7  809 .1  900 .4  988 .5  1076 .4  1167 .0  1247 .0  

7  722 .7  809 .1  900 .4  988 .5  1076 .4  1167 .0  1247 .0  

8  722 .7  809 .1  900 .5  987 .9  1076 .1  1167.0  1246.7  

10  723 .1  809 .5  900 .9  988 .3  1076.7  1167 .4  1247 .1  

11  727 .6  813 .4  905 .8  992 .2  1080 .1  1172 .1  1249.9  

12  731 .8  817 .3  910 .2  995 .4  1085.9  1178 .0  1255 .8  

13  731 .8  817 .3  910 .2  995 .4  1085.9  1178 .0  1255 .9  

14  726 .3  811 .6  906 .5  992 .8  1083.4  1171 .8  1252 .8  

15  731 .8  817 .3  910 .2  995 .4  1085 .9  1178 .0  1255 .8  

16  736 .7  821 .3  915 .1  1000.4  1091.5  1180 .9  1260 .9  

17  743 .8  829 .3  921 .9  1004 .1  1097.8  1187 .1  1266.8  

18  743 .8  829 .3  921 .9  1004 .1  1097.8  1187 .1  1266.8  

19  743 .8  829 .3  921 .9  1004 .1  1097.8  1187 .1  1266.8  

20  748 .9  833 .5  926 .3  1009 .1  1103.3  1191 .8  1271 .6  

21  755 .0  839 .1  932 .6  1015 .6  1106.5  1195 .8  1278 .6  

22  761 .2  843 .1  936 .3  1021 .0  1111.5  1201 .3  1284 .7  

23  767 .9  855 .1  945 .8  1031 .8  1121.3  1209 .9  1297 .5  

24  767 .9  855 .1  945 .8  1031 .8  1121.3  1209 .9  1297 .5  

25  767 .9  855 .1  945 .8  1031 .8  1121.3  1209 .9  1297 .5  

26  770 .1  857 .3  947 .0  1033 .9  1123.3  1211 .6  1299 .6  

27  779 .7  867 .5  955 .3  1046 .6  1131.5  1219 .0  1315 .4  

28  779 .7  867 .5  955 .3  1046 .6  1131.5  1219 .0  1315 .4  

29  779 .7  867 .5  955 .3  1046 .6  1131 .5  1219 .0  1315 .4  

30  779 .7  867 .5  955 .3  1046 .6  1131 .5  1219 .0  1315 .4  

31  779 .7  867 .5  955 .3  1046 .6  1131 .5  1219 .0  1315 .4  

32  782 .3  869 .9  957 .8  1049 .3  1133.6  1221 .0  1317 .7  

33  781 .7  869 .8  957 .1  1048.6  1133.7  1220 .9  1317 .7  

34  791 .4  882 .8  968 .6  1059 .7  1145 .0  1229 ,1  1326.8  

35  791 .4  882 .8  968 .6  1059 .7  1145 .0  1229 .1  1326.8  
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Table 6.2: (Continued) 

9 10  11  12  13  14  15  

36  791  .4  882  .8  968 .  . 6  1059.  7  1145  .0  1229.  1  1326 .8  
37  791  .4  882  .8  968 .  6  1059.  7  1145 .0  1229.  1  1326 .8  
38  793  .6  884  .6  970 .  9  1061 .  4  1147  .3  1230.  7  1328 .8  
39  802  .0  893  .8  982 .  2  1071 .  3  1161  .0  1240.  2  1337 .1  
40 802  .0  893  .8  982 .  2  1071 .  3  1161  .0  1240.  2  1337 .1  
41  792  .2  878  .6  971 .  1  1058.  9  1143  .2  1230.  3  1329 .2  
42  792  .2  878  .6  971 .  1  1058.  9  1143  .2  1230.  3  1329  .2  
43  808  .1  899 .4  987 .  0  1075 .  3  1166  .0  1245.  9  1342 .7  
44  721  .8  808  .1  899.  4  987 .  0  1075 .3  1166.  0  1245 .9  
59  721  .8  808  .1  899.  4  987 .  0  1075  .3  1166.  0  1245 .9  
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Table 6.3: Case i: Average processing times 

PROCESS PASSING PROCESS AVE.  T IME HOLDING TOTAL AVE.  ACT.  

NO.  T IMES T IME FOR PROCESS T IME T IME PROC.TIME 

1  450 454 .34  1 .01  9138.46  9592.79  21 .32  

2  450  432 .69  0 .96  4277.34  4710.03  10 .47  
3  450  433 .72  0 .96  205 .73  639 .45  1 .42  

4  450  430 .22  0 .96  0 .00  430 .22  0 .96  

5  450  471 .96  1 .05  0 .00  471 .96  1 .05  

6  450  0 .00  0 .00  4238.07  4238.07  9 .42  

7  450  2329 .49  5 .18  0 .00  2329.49  5 .18  

8  450  0 .00  0 .00  209 .23  209 .23  0 .46  
9  450  2236 .86  4 .97  0 .00  2236.86  4 .97  

10  450  3226 .67  7 .17  836 .86  4063.53  9 .03  

11  450 0 .00  0 .00  2035.89  2035.89  4 .52  
12  450  0 .00  0 .00  7 .07  7 .07  0 .02  

13  450  3885 .83  8 .64  997 .27  4883.10  10 .85  
14  450  0 .00  0 .00  6791.43  6791.43  15 .09  
15  450  2105 .68  4 .68  0 .00  2105.68  4 .68  
16  450  0 .00  0 .00  2784.48  •2784 .48  6 .19  

17  450  0 .00  0 .00  0 .00  0 .00  0 .00  

18  450  2303 .18  5 .12  0 .00  2303.18  5 .12  

19  450  3629 .12  8 .06  946 .96  4576.08  10 .17  

20  450  0 .00  0 .00  2272.88  2272.88  5 .05  

21  450  2393 .75  5 .32  0 .00  2393.75  5 .32  

22  450  4557 .10  10 .13  0 .00  4557.10  10 .13  

23  450  0 .00  0 .00  28197.91  28197.91  62 .66  

24  450  0 .00  0 .00  0 .00  0 .00  0 .00  

25  450  906 .83  2 .02  0 .00  906 .83  2 .02  
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Table 6.3: (Continued) 

PROCESS 

NO. 
PASSING PROCESS 

TIMES TIME 

AVE.  T IME HOLDING 

FOR PROCESS TIME 

TOTAL 

TIME 

AVE.  ACT 

PROC.TIME 

26 450  4819 .10  10 .71  0 .00  4819.10  10 .71  -

27  450  0 .00  0 .00  17852.20  17852.20  39 .67  

28  450  0 .00  0 .00  0 .00  0 .00  0 .00  

29  450  0 .00  0 .00  0 .00  0 .00  0 .00  

30  450  948 .76  2 .11  0 .00  948 .76  2 .11  

31  450  902 .33  2 .01  0 .00  902 .33  2 .01  

32  450  4666 .41  10 .37  0 .00  4666.41  10 .37  

33  450  4731 .36  10 .51  0 .00  4731.36  10 .51  

34  450  0 .00  0 .00  8409.18  8409.18  18 .69  

35  450  0 .00  0 .00  0 .00  0 .00  0 .00  

36  450  1341 .08  2 .98  6478.49  7819.57  17 .38  

37  450  892 .30  1 .98  0 .00  892 .30  1 .98  

38  450  4376 .09  9 .72  0.0,0 4376.09  9 .72  

39  450  0 .00  0 .00  2947.11  2947.11  6 .55  

40  450  1260 .60  2 .80  1290.80  2551.40  5 .67  

41  450  0 .00  0 .00  8242.54  8242.54  18 .32  

42  450  1377 .94  3 .06  6423.21  7801.14  17 .34  

43  450  0 .00  0 .00  0 .00  0 .00  0 .00  

44  450  0 .00  0 .00  0 .00  0 .00  0 .00  
59  450  0 .00  0 .00  37376.52  37376.52  83 .06  
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Table 6.4; Case 1; Average circuit processing times 

NO. 1  2 3  4  5  
TIME ; 52.7  64 .2  52 .8  61 .3  72 .8  

ACPT : 52.7  64 .2  52 .8  61 .3  72 .8  
NO. 10  11  12  13  14  

TIME : 68.5  80 .0  68 .6  65 .5  77 .0  
ACPT : 68.5  80 .0  68 .6  65 .5  77 .0  

NO. 19  20  21  22  23  

TIME ; 61.6  73 .1  61 .7  68 .5  80 .0  

ACPT : 61.6  73 .1  61 .7  68 .5  80 .0  

NO. 28  29  30  31  32  

TIME : 68.5  71 .3  64 .6  61 .6  73 .1  

ACPT : 68.5  71 .3  64 .6  61 .6  73 .1  

NO. 37  38  39  40  41  

TIME : 63.3  74 .8  63 .4  62 .3  73 .8  

ACPT : 63.3  74 .8  63 .4  62 .3  73 .8  

NO. 46  47  48  49  50  

TIME : 61.4  72 .9  61 .5  58 .4  70 .0  

ACPT : 61.4  72 .9  61 .5  58 .4  70 .0  

NO. 55  56  57  58  59  

TIME ; 55.0  66 .5  55 .1  57 .4  54 .4  

ACPT ; 55.0  66 .5  55 .1  57 .4  54 .4  

NO. 64  65  66  67  68  

TIME ; 70.1  67 .1  60 .6  57 .6  44 .9  

ACPT : 70.1  67 .1  60 .6  57 .6  44 .9  

NO. 73  74  75  76  

TIME 61 .6  73 .3  71 .1  23 .5  

ACPT ; 61.6  73 .3  71 .1  23 .5  

6 
61.4  

61 .4  

15  

65 .6  

65 .6  

24  

68 .6  
68 .6  

33 

61 .7  

61 .7  

42  

62 .4  

62 .4  

51  

58 .6  

58 .6  

60 
53.9  

53 .9  

69  

64 .5  

64 .5  

7  

58 .3  

58 .3  

16 
64.5  

64 .5  

25  

65 .5  

65 .5  
34  

66 .3  

66 .3  

43  

59 .4  

59 .4  

52  

57 .9  

57 .9  

61 
51.0  

51 .0  

70  

76 .2  

76 .2  

8 
69.9  

69 .9  

17  

76 .0  

76 .0  

26 
77.0  

77 .0  

35  

77 .8  

77 .8  

44  

70 .9  

70 .9  

53  

69 .4  

69 .4  

62 
72.3  

72 .3  

71  

74 .0  

74 .0  

9  

58 .5  

58 .5  

18 
64.6  

64 .6  

27  

61 .7  

61 .7  

36  

66 .4  

66 .4  

45  

59 .5  

59 .5  

54  

58 .0  

58 .0  

63  

69 .3  

69 .3  

72  

41 .9  

41 .9  



www.manaraa.com

138 

the model effectiveness in this case is to reduce the processing time by training the 

member involved in the process. Therefore, as the treatment to obtain a better 

effectiveness of Case 1, which has one capacity for each process and the overall 

system, the processing times on the critical circuit are reduced. After comparing 

this result to the original one, the effect by increasing capacity will be investigated. 

6.2.2 Case 2: Reduced processing times on ôn 

The selection of the process to be reduced depends on the length of the token 

holding time of the process as stated in Subsection 5.2.2. For example, comparing 

the holding times of processes (or places), pjQ and which are in the same slice, 

the P2Q holding time is less than that of p^l- This implies that the process, p^Q, 

is more critical for firing of since the firing time of ig only depends on the task 

termination time of the process which finishes its task the latest among the input 

places of ^0. Therefore, should be reduced. Meanwhile, as shown in Table 6.3, 

the processes in the circuit, Su are all minimal in their slices. The reason is very 

simple. Since the circuit, is the longest circuit in the system, all places in that 

circuit are critical. 

Processing times of the critical circuit, Su, are reduced as shown in Table 6.5. 

In this case, the reduced amount of the processing time is assumed to be the max­

imum available to each process. From Table 6.8, the maximum average circuit 

processing time, a, is 

a = max{o:(6i),---, a((57g)} 

= max{33.1, 39.8, 14.1} 

= 50.2 (= «(fgg)) . 
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Table 6.5: Reduced mean processing times of circuit. 

• place 10 13 19 21 22 25 26 30 32 37 CO
 

00
 

' old /7 8 8 8 5 10 2 10 2 10 2 10 i 

' new ]! 4.8 4.8 4.8 3 6 1.2 6 1.2 6 1.2 6 

Therefore, the maximum throughput rate is <& = 1. a = 1/50.2 = .0199. Comparing 

this result with the previous one ( = .0125), this model, i.e., the model with reduced 

processing times, is improved as expected. Xovv, the maximum processing rates of 

this case are 

"^cmd - ™n{/T6' 

. r J L Il_ J_l 
4.84' 3.19' 6.08 ̂  

= .0709 (=/76) 

®cic ™n(/68, /,2, ûig' Û25' %26^ 

. f J I 1 I 1 L\ 
126.9' 27.2' 5.18' 5.12' 1.21' 6.43-" 

= .0368 (= f ' j o )  

. ; 1 1 1 1 1 1 1 I 1 
138.0' 38.3' 38.5' 38.7' 4.30' 4.70' 1.26' 5.96J 

= .0258 (= /73) 

= niin{/02, /ga, /go, /7O' /"I' ^74' /75' 

"38' 
. ; 1 1 1 1 1 1 1 L 

145.0' 45.3' 45.7' 46.0' 45.5' 46.2' 45.8' 46.5' 

—  —  — 1  4.97' 1.18' 5.87-' 
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Table 6.6: Case 2: Task processing history 

1 2 3  4  5  

1  0 .0  65 .9  129 .8  196 .0  262 .6  

2  0 .0  65 .9  129 .8  196 .0  262 .6  

3  0 .0  65 .9  129 .8  196 .0  262 .6  

4  0 .0  65 .9  129 .8  196 .0  262 .6  

5  0 .0  65 .9  129 .8  196 .0  262 .6  

6  1 .0  66 .8  130 .6  197 .1  263 .7  

7  1 .0  66 .8  130 .6  197 .1  263 .7  

8  1 .2  66 .8  130 .7  196 .9  263 .8  

9  1 .2  66 .8  130 .7  196 .9  263 .8  

10  1 .7  67 .2  131.1 197.3  264 .1  

11  5 .6  72 .9  136 .2  202 .3  268 .6  

12  7 .5  74 .9  137 .5  204 .3  270 .1  

13  7 .5  74 .9  137 .5  204 .3  270 .1  

14  6 .7  71 .9  137 .7  201 .7  267 .3  

15  7 .5  74 .9  137 .5  204 .3  270 .1  

16  11.7 79 .6  141 .0  211.0 273.7  

17  14 .9  81 .9  146 .9  213 .5  277 .2  

18  14 .9  81 .9  146 .9  213 .5  277 .2  

19  14 .9  81 .9  146 .9  213 .5  277 .2  

20  21 .8  85 .9  154 .2  219 .4  282 .0  

21  23 .7  88 .5  155 .7  221 .6  283 .5  

22  28 .0  91 .3  158 .9  226 .0  286 .1  

23  34 .7  98 .0  165 .2  232 .6  290 .3  

24  34 .7  98 .0  165 .2  232 .6  290 .3  

25  34 .7  98 .0  165 .2  232 .6  290 .3  

26  36 .2  99 .1  165 .9  234 .2  291 .7  

27  43 .1  105 .1  171 .9  241 .4  297 .8  

28  43 .1  105 .1  171 .9  241 .4  297 .8  

29  43 .1  105 .1  171 .9  241 .4  297 .8  

30  43 .1  105 .1  171.9 241.4  297 .8  

31  43 .1  105 .1  171.9 241.4  297 .8  

32  44 .2  106 .2  172 .7  242 .5  299 .1  

33  45 .2  106 .9  173 .4  243 .2  299 .8  

34  49 .5  111.7 179 .7  251 .0  306 .0  

35  49 .5  111.7 179 .7  251 .0  306 .0  

36  49 .5  111.7 179 .7  251 .0  306 .0  

37  49 .5  111.7 179 .7  251 .0  306 .0  

38  50 .4  113.0 181 .0  252 .2  307 .0  

39  56 .1  119.0 187 .6  257 .5  314 .9  

40  56 .1  119.0 187 .6  257 .5  314 .9  

6  7  8  

321  .6  383  .8  449 .1  

321 .6  383  .8  449 .1  

321 .6  383  .8  449  .1  

321 .6  383  .8  449 .1  

321 .6  383  .8  449  .1  

322 .5  384  .8  450  .6  

322  .5  384  .8  450  .6  

322  .8  384  .5  450  .1  

322 .8  384  .5  450  .1  

323 .3  385  .2  450  .6  

328  .0  391  .9  454 .6  

330  .6  393  .7  458  .7  

330  .6  393  .7  458  .9  

328  .1  391 .5  455 . 1  

330 .6  393  .7  458  .7  

335  .8  398  .3  464  .2  

339  .5  402  .7  466  .9  

339  .5  402  .7  466  .9  

339  .5  402  .7  466  .9  

343  .9  407  .8  471  .7  

346  .6  409  .6  475  .1  

350 .6  412 .2  477 .6  

356  .5  419 .3  483 . 1  

356 .5  419 .3  483  .1  

356 .5  419 .3  483  .1  

358 .0  420  .4  484  .2  

363  .9  428  . 1  491 .4  

363  .9  428  .1  491 .4  

363  .9  428  . 1  491 .4  

363  .9  428  .1  491 .4  

363  .9  428  . 1  491 .4  

365  .2  429  .4  492  .5  

366  .0  430  .5  493  .4  

370  .3  433  .9  498  .2  

370  .3  433  .9  498  .2  

370  .3  433  .9  498  .2  

370  .3  433  .9  498  .2  

371  .7  434  .9  499  .8  

377  .2  439  .7  504  .0  

377  .2  439  .7  504  .0  
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Table 6.6: (Continued) 

1 2 3  4  5  6  7  8  

41  57 .6  120 .6  185 .8  248 .8  310 .0  375 .7  442 .6  502  .2  

42  57 .6  120 .6  185 .8  248 .8  310 .0  375 .7  442 .6  502  .2  

43  65 .9  129 .8  196 .0  262 .6  321 .6  383 .8  449 .1  510 .3  

44  0 .0  65 .9  129 .8  196 .0  262 .6  321 .6  383 .8  449  .1  

59 0 .0  65 .9  129 .8  196 .0  262 .6  321 .6  383 .8  449  .1  

9 10  11  12  13  14  15  

1  510.3  572 .5  632 .8  694 .9  758 .1  821 .7  877 .1  

2  510 .3  572 .5  632 .8  694 .9  758 .1  821 .7  877 .1  

3  510 .3  572 .5  632 .8  694 .9  758 .1  821 .7  877 .1  

4  510 .3  572 .5  632 .8  694 .9  758 .1  821 .7  877 .1  

5  510 .3  572 .5  632 .8  694 .9  758 .1  821 .7  877 .1  

6  511.2 573 .5  633 .8  696 .3  759 .2  822 .6  878 .2  

7  511.2 573 .5  633 .8  696 .3  759 .2  822 .6  878 .2  

8  511.2 573 .5  633 .8  695 .7  759 .0  822 .6  878 .0  

9  511.2 573 .5  633 .8  695 .7  759 .0  822 .6  878 .0  

10  511.6 573 .9  634 .3  696 .1  759 .5  823 .1 - 878 .4  

11  516 .1  577 .8  639 .2  700 .0  763 .0  827 .8  881 .1  

12  518 .3  579 .6  641 .4  701 .7  765 .8  830 .3  884 .2  

13  518 .3  579 .6  641 .4  701 .7  765 .8  830 .4  884 .3  

14  514 .8  576 .0  639 .9  700 .7  766 .3  827 .4  884 .2  

15  518 .3  579 .6  641 .4  701 .7  765 .8  830 .3  884 .2  

16  523 .2  583 .7  646 .3  706 .7  771 .3  833 .3  889 .2  

17  527 .0  587 .8  650 .0  708 .7  775 .8  836 .9  892 .4  

18  527 .0  587 .8  650 .0  708 .7  775 .8  836 .9  892 .4  

19  527 .0  587 .8  650 .0  708 .7  775 .8  836 .9  892 .4  

20  532 .0  592 .0  654 .4  713 .6  781 .3  841 .6  897 .2  

21  534 .7  594 .6  657 .7  716 .9  783 .0  843 .3  900 .8  

22  538 .3  597 .0  659 .9  720 .2  786 .0  846 .6  904 .4  

23  542 .4  604 .2  665 .5  726 .6  791 .8  851 .8  912 .1  

24  542 .4  604 .2  665 .5  726 .6  791 .8  851 .8  912 .1  

25  542 .4  604 .2  665 .5  726 .6  791 .8  851 .8  912 .1  



www.manaraa.com

142 

Table 6.6: (Continued) 

9 10  11  12  13  14  15  
26  543 .7 - 605 .6  666 .3  727 .9  793 .0  852 .8  913 .4  
27  549 .5  611.7 671 .3  735 .5  798 .0  857 .2  922 .9  
28  549 .5  611.7 671 .3  735 .5  798 .0  857 .2  922 .9  
29  549 .5  611.7 671 .3  735 .5  798 .0  857 .2  922 .9  
30  549 .5  611.7 671 .3  735 .5  798 .0  857 .2  922 .9  
31  549 .5  611.7 671 .3  735 .5  798 .0  857 .2  922 .9  
32  551 .0  613 .1  672 .8  737 .1  799 .2  858 .4  924 .2  
33  551 .4  614 .0  673 .1  737 .5  800 .2  859 .1  925 .1  
34  555 .4  620 .6  679 .1  742 .3  806 .2  863 .4  929 .8  
35  555 .4  620 .6  679 .1  742 .3  806 .2  863 .4  929 .8  
36  555 .4  620 .6  679 .1  742 .3  806 .2  863 .4  929 .8  
37  555 .4  620 .6  679 .1  742 .3  806 .2  863 .4  929 .8  
38  556 .8  621 .9  680 .2  743 .2  807 .3  864 .5  930 .9  
39  561 .8  627 .4  686 .9  748 .5  815 .2  871 .3  936 .0  
40  561 .8  627 .4  686 .9  748 .5  815 .2  871 .3  936 .0  
41  564 .9  620 .9  687 .1  751 .5  808 .6  866 .5  936 .6  
42  564 .9  620 .9  687 .1  751 .5  808 .6  866 .5  936 .6  
43  572 .5  632 .8  694 .9  758 .1  821 .7  877 .1  943 .9  
44  510 .3  572 .5  632 .8  694 .9  758 .1  821.7 877 .1  
59  510 .3  572 .5  632 .8  694 .9  758 .1  821 .7  877 .1  
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Table 6.7: Case 2: Average processing times 

PROCESS PASSING PROCESS AVE. TIME HOLDING TOTAL AVE. ACT. 

NO. TIMES TIME FOR PROCESS TIME TIME PROC.TIME 

1 450 454.34 1.01 6921.94 7376.28 16.39 
2 450 432.69 0.96 3248.12 3680.81 8.18 
3 450 433.72 0.96 205.73 639.45 1.42 
4 450 430.22 0.96 0.00 430.22 0.96 
5 450 471.96 1.05 0.00 471.96 1.05 
6 450 0 .00 0.00 3208.85 3208.85 7.13 
7 450 2319.87 5.16 0.00 2319.87 5.16 
8 450 0 .00 0.00 209.23 209.23 0.46 
9 450 2236.86 4.97 0 .00 2236.86 4.97 

10 450 1935.99 4.30 1093.22 3029.20 6.73 
11 450 0 .00 0.00 1001.58 1001.58 2.23 
12 450 0 .00 0.00 12.14 12.14 0.03 
13 450 2331.48 5.18 1364.17 3695.66 8 .21 
14 450 0 .00 0.00 4584.57 4584.57 10.19 
15 450 2115.29 4.70 0.00 2115.29 4.70 
16 450 0 .00 0.00 1592.50 1592.50 3.54 
17 450 0 .00 0.00 0.08 0.08 0.00 
18 450 2303.18 5.12 0.00 2303.18 5.12 
19 450 2177.45 4.84 1215.96 3393.41 7.54 
20 450 0 .00 0.00 1090.31 1090.31 2.42 
21 450 1436.23 3.19 0.00 1436.23 3.19 
22 450 2734.28 6.08 0.00 2734.28 6.08 
23 450 0 .00 0.00 20306.62 20306.62 45.13 
24 450 0 .00 0.00 0.00 0.00 0.00 
25 450 544.09 1.21 0.00 544.09 1.21 
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Table 6.7: (Continued) 

PROCESS PASSING PROCESS AVE. TIME HOLDING TOTAL AVE. ACT. 

NO.  T IMES T IME FOR PROCESS T IME T IME PROC.TIME 

26 450 2891.53 6 .43 0.00 2891.53 6.43 
27 450 0 .00 0.00 13396.02 13396.02 29.77 
28 450 0 .00 0.00 0.00 0.00 0.00 
29 450 0 .00 0.00 0.00 0.00 0.00 
30 450 569.25 1.26 0.00 569.25 1.26 
31 450 902.33 2.01 0.00 902.33 2.01 
32 450 2682.75 5.96 0.00 2682.75 5.96 
33 450 4821.48 10.71 0.00 4821.48 10.71 
34 450 0 .00 0.00 7278.84 7278.84 16.18 
35 450 0 .00 0.00 0.00 0.00 0.00 
36 450 1383.70 3.07 5305.63 6689.32 14.87 
37 450 531.80 1.18 0.00 531.80 1.18 
38 450 2642.19 5.87 0.00 2642.19 5.87 
39 450 0 .00 0.00 3911.17 3911.17 8.69 
40 450 1248.01 2.77 2267.44 3515.44 7.81 
41 450 0 .00 0.00 4659.05 4659.05 10.35 
42 450 1380.13 3.07 2837.41 4217.54 9.37 
43 450 0 .00 0.00 0.00 0.00 0.00 
44 450 0 .00 0.00 0.00 0.00 0.00 
59 450 0 .00 0.00 26314.40 26314.40 58.48 
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Table 6.8: Case 2; Average circuit processing times 

NO. 1  2 3  4  5  
TIME ! 33.1  39 .8  38 .5  38 .2  44 .9  
ACPT : 33.1  39 .8  38 .5  38 .2  44 .9  
NO. 10  11  12  13  14  

TIME : 42.5  49 .2  48 .0  42 .8  49 .5  

ACPT : 42.5  49 .2  48 .0  42 .8  49 .5  

NO. 19  20  21  22  23  

TIME ; 42.3  49 .0  47 .8  42 .5  49 .2  
ACPT : 42.3  49 .0  47 .8  42 .5  49 .2  

NO. 28  .  29  30  31  32  

TIME : 42.5  44 .1  47 .5  42 .3  49 .0  

ACPT ; 42.5  44 .1  47 .5  42 .3  49 .0  

NO. 37  38  39  40  41  

TIME : 43.4  50 .2  48 .9  42 .7  49 .4  

ACPT ; 43.4  50 .2  48 .9  42 .7  49 .4  

NO. 46  47  48  49  50  

TIME z 38 .3  45 .0  43 .8  38 .6  45 .3  

ACPT : 38.3  45 .0  43 .8  38 .6  45 .3  

NO.  55  56  57  58  59  

TIME : 38.5  45 .3  44 .0  39 .6  39 .9  

ACPT : 38.5  45 .3  44 .0  39 .6  39 .9  

NO. 64  65  66  67  68  

TIME : 45.7  46 .0  38 .0  38 .3  26 .9  

ACPT : 45.7  46 .0  38 .0  38 .3  26 .9  

NO. 73  74  75  76  

TIME ; 38.7  45 .8  46 .5  14 .1  

ACPT : 38.7  45 .8  46 .5  14 .1  

6  7  

43 .7  38 .5  

43 .7  38 .5  

15  16  

48 .3  42 .0  

48 .3  42 .0  

24  25  

48 .0  42 .8  

48 .0  42 .8  

33  34  

47 .8  43 .2  

47 .8  43 .2  

42  43  

48 .2  42 .9  

48 .2  42 .9  

51  52  

44 .0  38 .2  

44 .0  38 .2  

60  61  

39 .6  39 .9  

39 .6  39 .9  

69  70  

38 .5  45 .5  

38 .5  45 .5  

8  9  
45 .2  43 .9  

45 .2  43 .9  

17  18  

48 .8  47 .5  

48 .8  47 .5  

26  27  

49 .5  47 .8  

49 .5  47 .8  

35  36  

49 .9  48 .6  

49 .9  48 .6  

44  45  

49 .7  48 .4  

49 .7  48 .4  

53  54  

45 .0  43 .7  

45 .0  43 .7  

62  63  

45 .0  45 .3  

45 .0  45 .3  

71  72  

46 .2  27 .2  

46 .2  27 .2  
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= .0215 (= /75) 

1 1 1  
'I'ihg = mi^/gg./sg./eo./ei, r;̂ , 

... • r 1 1 1 1 1 1 1 1 
139.6' 39.9' 39.6' 39.9' 5.16' 2.01' 10.71 J 

= .0251 (= fQi) . 

The maximum throughput rate of this case is also determined by the structural 

constraint, since the circuit, 6gg, is also the critical circuit which consists of the 

processes covered by the overall system, not any specific process. Therefore, as 

for the previous case, the remedy to improve the net performance is either increasing 

the Qsys or reducing the processing times of the critical circuit. By comparing the 

previous critical circuit to the present critical circuit in terms of their processing 

times of the tasks, a bottle-neck can be easily found, since the other processing times 

are equivalent to each other, except in 6^^ and pg and ^38* Therefore, 

the only way to improve the effectiveness is to reduce /.ig and fiig. 

6.2.3 Case 3: Reduced processing time of pg and p^g 

As the previous case, reduce /.tg and to their maximum available. Then the 

maximum throughput rate changes from $ = 1/0(633) ~ 0199 to $ = l/a(6ii) = 

1/49.2 = .0203. (See Table 6.9.) This case also indicates that the $ is determined 

by the structural constraint. From Cases 1 and 2, note that there is no further way 

to improve the system effectiveness with the processing times, since the critical cir­

cuit, èiYi not only characterizes that 0 is determined by the structural constraint, 

but also all related processing times to the critical circuit have been reduced. There­

fore, the rest of the remedies to improve the system effectiveness is to increase the 
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capacity of the system. Next, the effect by increasing the system capacity to the 

maximum will be investigated. 

6.2.4 Case 4: Maximum system capacity 

Taking the upper limit of the system's capacity {Qsys=^), the result can be 

obtained as shown in Table 6.10. The maximum throughput rate is, $ = l/a(6yQ) = 

1/46.2 = .0216 and the average circuit processing rate of each process is 

"kernel = /76 = = /gg = .0370, 4)^ = /gg = .0255, 

"^sbg = /70 = 0216, 4>i}jg = /58 = .0269 . 

Therefore, from the above result, the maximum processing rate of the SBG process 

reflects to the maximum throughput rate of the overall net in this case. Now, 

there is only one possible alternative to improve the system effectiveness, i.e., the 

increasing of the SBG's capacity, since all the processing times related to critical 

circuit, 6yQ, have been already reduced. 

6.2.5 Case 5: Maximum SBG capacity 

By increasing the capacity of the SBG process up to its maximum {Qsbg~^)^ 

the maximum throughput rate can be obtained from Table 6.11 as follows. 

Comparing the critical circuit of Case 5 to the critical circuit of Case 4, the fact 

that only one task, needs to be reduced can be found. Therefore, the next move 
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Table 6.9: Case 3: Average circuit processing times 

NO. 1 2 3 4 5 
TIME : 33.1  39.8  38.5  38.2  44.9  
ACPT : 33.1  39.8  38.5  38.2  44.9  

NO. 10 11  12 13 14 
TIME : 42.5  49.2  48.0  40.7  47.5  
ACPT : 42.5  49.2  48.0  40.7  47.5  
NO. 19 20 21  22 23 

TIME : 40.2  47.0  45.7  42.5  49.2  
ACPT : 40.2  47.0  45.7  42.5  49.2  
NO. 28 29 30 31  32 

TIME : 42.5  44 .1  47.5  40.2  47.0  
ACPT : 42.5  44 .1  47.5  40.2  47.0  

NO. 37 38 39 40 41  
TIME : 39.4  46.1  44.9  40.7  47.4  
ACPT : 39.4  46.1  44.9  40.7  47.4  

NO. 46 47 48 49 50 
TIME : 38.3  45.0  43.8  36.5  43.3  
ACPT ; 38.3  45.0  43.8  36.5  43.3  
NO. 55 56 57 58 59 

TIME : 36.5  43.2  42.0  39.6  37.9  
ACPT : 36.5  43.2  42.0  39.6  37.9  
NO. 64 65 66 67 68 

TIME : 43.7  41.9  38.0  36.2  26.9  

ACPT ; 43.7  41.9  38.0  36.2  26.9  

NO. 73 74 75 76 

TIME : 36.7  43.7  42.4  14 .1  

ACPT 36.7  43.7  42.4  14 .1  

6 
43.7  

43.7  

15 

46.2  

46.2  

24 

48.0  

48.0  

33 

45.7  

45.7  

42 

46 .1  

46.1  

51 

42.0  

42.0  

60 
39.6  

39.6  

69 

38.5  

38.5  

7  

36.4  

36.4  

16 
42.0  

42.0  

25 

40.7  

40.7  
34 

41.2  

41.2  

43 

38 .9  

38.9  

52 

38.3  

38.3  

61 
37.9  

37.9  

70 

45.5  

45.5  

8 
43.2  

43.2  

17 

48.7  

48.7  

26 
47.5  

47.5  

35 

47.9  

47.9  

44 

45.6  

45.6  

53 

45.0  

45.0  

62 
45.0  

45.0  

71  

44.2  

44.2  

9  

41.9 

41.9  

18 
47.5  

47.5  

27 

45.7  

45.7  

36 

46.6  

46.6  

45 

44.4  

44.4  

54 

43.7  

43.7  

63 

43.2  

43.2  

72 

25.2  

25.2  
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Table 6.10: Case 4: Average circuit processing times 

NO. 1  2 3  4  5  

TIME ; 33.1  40.1  36.2  38 .1  45.1  

ACPT ; 11.0 13.4  12 .1  12.7  15.0  

NO. 10 11  12 13 14 

TIME : , 43.0  50.0  46 .1  41.2  48 .1  

ACPT : 14.3  16.7  15.4  13.7  16.0  

NO. 19 20 21  22 23 

TIME ; 41.1 48.1  44.2  43 .1  50.1  

ACPT : 13.7  16.0  14.7  14.4  16.7  

NO. 28 29 30 31  32 

TIME ; 43.1  45.0  46 .1  41.1 48.1  

ACPT ; 14.4  15.0  15.4  13.7  16.0  

NO. 37 38 39 40 41  

TIME : 39.1  46.1  42.2  40.9  47.9  

ACPT ! 13.0  15.4  14 .1  13.6  16.0  

NO. 46 47 48 49 50 

TIME ; 38.1  45.1  41.2  36.3  43.2  

ACPT ; 12.7  15.0  13.7  12 .1  14.4  

NO. 55 56 57 58 59 

TIME ; 35.7  42.7  38.7  37.2  35.4  

ACPT ; 11.9 14.2  12.9  37.2  35.4  

NO. 64 65 66 67 68 

TIME ! 44.0  42.1  39.1  37.2  27.0  

ACPT ; 44.0  42 .1  39.1  37.2  27.0  

NO. 73 74 75 76 

TIME 37.3  44.3  42.2  14.0  

ACPT : 37.3  44.3  42.2  14.0  

6 
41.2  

13.7  

15 

44.2  

14.7  

24 

46 .1  

15.4  

33 

44.2  

14.7  

42 

44 .0  

14.7  

51 

39.3  

13 .1  

60 
36.6  

36.6  

69 

39.2  

39.2  

7  

36.3  

12.1 
16 

43.0  

14.3  

25 

41.2  

13.7  

34 

41.0 

13.7  

43 

39 .1  

13.0  

52 

37.5  

12.5  

61 
34.8  

34.8  

70 

46.2  

46.2  

8 
43.2  

14.4  

17 

49.9  

16.6 
26 

48.2  

16.1 
35 

48.0  

16.0 
44 

46.0  

15 .3  

53 

44.5  

14 .8  

62 
46.1  

46.1  

71 

44.1  

44.1  

9  

39.3  

13 .1  

18 
46.0  

15.3  

27 

44.2  

14.7  

36 

44 .1  

14.7  

45 

42 .1  

14.0  

54 

40.6  

13.5  

63 

44.2  

44.2  

72 

25.2  

25.2  
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Table 6.11: Case 5: Average circuit processing times 

NO. 1  2 3 4 5  

TIME : 32.3  39.1  36.5  37,0  43.9  

ACPT : 10.8  13.0  12.2  12.3  14.6  

NO. 10 11  12 13 14 

TIME : 41.6  48.5  45.8  39.7  46.6  

ACPT : 13.9  16.2  15.3  13.2  15.5  

NO.  19  20 21  22 23 
TIME : 39.9  46.8  44 .1  41.7  48.6  

ACPT ; 13.3  15.6  14.7  13.9  16.2  

NO. 28 29 30 31  32 

TIME : 41.7  43.8  46 .1  40.0  46.9  

ACPT ; 13.9  14.6  15.4  13.3  15.6  

NO.  37 38 39 40 41  

TIME ; 38.1  45.0  42.3  40.2  47 .1  

ACPT : 12.7  15.0  14 .1  13.4  15.7  

NO. 46 47 48 49 50 

TIME : 37.0  43.9  41.2  35 .1  42.0  

ACPT : 12.3  14.6  13.7  11.7 14.0  

NO.  55 56 57 58 59 

TIME : 35.1  41.9  39.3  37.4  35.4  

ACPT ; 11.7 14.0  13 .1  37.4  35.4  

NO.  64  65 66 67 68 

TIME : 43.0  41.1  38.1  36.2  26.4  

ACPT : 14.3  13.7  38 .1  36.2  26.4  

NO.  73  74 75 76 

TIME : 36.0  42.6  40.9  14.5  

ACPT 36.0  14.2  13.6  14.5  

6 
41.2  

13.7  

15 

43.9  

14 .6  

24 

45.9  

15.3  

33 

44.2  

14.7  

42 

44.4  

14 .8  

51 

39.3  

13 .1  

60 
37.4  

37.4  

69 

37.9  

37.9  

7  

35 .1  

11.7 

16 
41.8  

13.9  

25 

39.8  

13.3  

34 

40.0  

13 .3  

43 

38 .3  

12.8 
52 

37.0  

12.3  

61 
35.4  

35.4  

70 

44.5  

14 .8  

8 
42.0  

14.0  

17 

48.7  

16.2 
26 

46.7  

15.6  

35 

46.9  

15.6  

44 

45 .2  

15 .1  

53 

43.9  

14.6  

62 
44.7  

14.9  

71 

42.8  

14.3  

9  

39.3  

13 .1  

18 
46.0  

15.3  

27 

44.2  

14.7  

36 

44.2  

14.7  

45 

42 .5  

14 .2  
54 

41.2  

13.7  

63 

42.8  

14.3  

72 

24.5  

24.5  
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is to reduce /W15. By iterating these procedures, the most effective normal model 

can be obtained under the given assumptions. 

On the other hand, the average response time can be calculated from task 

processing history tables. For example, the average response time of Case 1 is 

_ (,450 _ ,450) 

450 

_ (:^43-^l^) 
15 

(1342.7- 0.0) 

15 

= 89.5 , 

where 450 indicates the total number of attacks (or incoming information) and 15 

denotes total number of attacks per run. The inverse of this value is very close to 

the $2' 

$1 = 0.0125 = ̂ ^1 = 1/89.5 = 0.0112 . 

All input changes and results according to the procedures stated so far in this section 

are summarized in Table 6.17. 

As the result of the analysis of the normal model, N, the model with the best 

effectiveness under the given conditions is the model which has a maximum system 

and process capacities, except a CMD process with reduced processing times on 

corresponding critical circuits. Thus, the conclusion can be derived as in the present 

system, all personnel are trained and stimulated more in order to execute their 

tasks faster. Additionally, 14 more capacities (or people) should be supplemented. 
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Table 6.12: Case 6: Average circuit processing times 

NO. 1  2 3  4  5  

TIME : 32.2  39.2  36.4  37.0  43.9  

ACPT ; 10.7  13 .1  12.1  12.3  14.6  

NO.  10  11  12 13 14 

TIME : 41.6  48.5  45.8  39.7  46.6  

ACPT : 13.9  16.2  15.3  13.2  15.5  

NO.  19  20 21  22 23 

TIME 37.9  44.8  42 .1  41.7  48.6  

ACPT : 12.6  14.9  14.0  13.9  16.2  

NO. 28 29 30 31  32 

TIME ; 41.7  43.9  44 .1  38.0  44.9  

ACPT ; 13.9  14.6  14.7  12.7  15.0  

NO. 37 38 39 40 41  

TIME 38.1  45.0  42.3  38.2  45.1  

ACPT ; 12.7  15.0  14 .1  12.7  15.0  

NO. 46 47 48 49 50 

TIME ; 36.9  43.9  41 .1  35.1  42.0  

ACPT Î  12 .3  14.6  13.7  11.7 14.0  

NO. 55 56 57 58 59 

TIME ; 35.1  42.0  39.2  37.3  35.4  

ACPT ; 11.7 14.0  13 .1  37.3  35.4  

NO. 64 65 66 67 68 

TIME ; 41.0  39 .1  36.1  34.2  26.3  

ACPT ; 13.7  13.0  36.1  34.2  26.3  

NO.  73  74 75 76 

TIME 36.0  42.6  40.9  14.5  

ACPT : 36.0  14.2  13.6  14.5  

6 
41.2  

13.7  

15 

43.9  

14.6  

24 

45.9  

15.3  

33 

42.2  

14 .1  

42 

42.4  

14 .1  

51 

39.2  

13 .1  

60 
37.3  

37.3  

69 

37.9  

37.9  

7  

35 .1  

11.7 
16 

39.8  

13.3  

25 

39.8  

13.3  

34 

40.0  

13.3  

43 

36 .3  

12.1 
52 

37.0  

12.3  

61 
35.4  

35.4  

70 

44.5  

14.8  

8 
42.0  

14.0  
17 

46.7  

15 .6  
26 

46.7  

15.6  

35 

46 .9  

15.6  

44 

43 .2  

14 .4  

53 

43 .9  

14.6  

62 
42.7  

14.2  

71 

42.8  

14.3  

9  

39.3  

13 .1  
18 

44.0  

14.7  

27 

42.2  

14 .1  

36 

44.2  

14.7  

45 

40.5  

13.5  

54 

41.1 

13.7  

63 

40.8  

13.6  

72 

24.4  

24.4  
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Table 6.13: Case 7: Average circuit processing times 

NO. 1  2 3  4  5  

TIME ; 32.0  39.0  36 .1  36.8  43.7  

ACPT : 10.7  13.0  12.0  12.3  14.6  

NO.  10  11  12 13 14 

TIME : 41.3  48.2  45.3  39 .2  46.2  

ACPT : 13.8  16 .1  15.1  13.1  15.4  

NO.  19  20 21  22 23 

TIME ; 37.6  44.6  41.7  41.3  48.3  

ACPT : 12.5  14.9  13.9  13.8  16.1  

NO. 28 29 30 31  32 

TIME ; 41.3  43.5  43.8  37.7  44.6  

ACPT ; 13.8  14.5  14.6  12.6  14.9  

NO. 37 38 39 40 41  

TIME ; 37.7  44.6  41.8  38 .1  45.1  

ACPT ; 12.6  14.9  13.9  12.7  15.0  

NO.  46 47 48 49 50 

TIME ; 36.7  43.7  40.8  34.7  41.6  

ACPT ; 12.2  14.6  13.6  11.6 13.9  

NO.  55 56 57 58 59 

TIME : 34.9  41.8  38.9  37 .1  35.0  

ACPT ! 11.6 13.9  13.0  37 .1  35.0  

NO. 64 65 66 67 68 

TIME ; 41.1  39.0  35.8  33.7  25.9  

ACPT : 13.7  13.0  8 .9  8 .4  25.9  

NO.  73  74 75 76 

TIME ; 35.3  42.2  40.6  14 .2  

ACPT : 8.8  14.1  13.5  14.2  

6 
40.8  

13.6  

15 

43.3  

14 .4  

24 

45.4  

15 .1  
33 

41.7  

13 .9  

42 

42 .2  

14 .1  

51 

38.7  

12.9  
60 

37.3  

37.3  

69 
37.4  

9 .3  

7  

34.7  

11.6 
16 

39.7  

13.2  

25 

39.3  

13 .1  

34 
39.7  

13.2  

43 

36 .1  

12.0 
52 

36.9  

12.3  

61 
35.2  

35.2  

70 
44.3  

14 .8  

8 
41.7  

13 .9  

17 

46.6  

15.5  

26 
46.2  

15.4  

35 

46.7  

15 .6  

44 

43 .0  

14.3  

53 

43.9  

14 .6  

62 
42.6  

14.2  

71 

42.7  

14 .2  

9  

38.8  

12.9  

18 
43.7  

14.6  

27 
41.7 

13.9  

36 

43.8  

14.6  

45 

40 .2  

13 .4  

54 

41.0 

13.7  

63 

40.6  

13.5  

72 
23.9  

23.9  
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Table 6.14: Case 8: Average circuit processing times 

NO. 1  2 3  4  5  

TIME ; 32.8  39.6  32.3  37.3  44.2  

ACPT ; 10.9  13.2  10.8  12.4  14.7  

NO. 10 11  12 13 14 

TIME : 42.0  48.8  41.5  39.7  46.5  

ACPT ; 14.0  16.3  13.8  13.2  15.5  

NO. 19 20 21  22 23 

TIME ; 38.1  45.0  37.7  42.0  48.9  

ACPT : 12.7  15.0  12.6  14.0  16.3  

NO. 28 29 30 31  32 

TIME ; 42.0  44.3  40.0  38.2  45.0  

ACPT ; 14.0  14.8  13.3  12.7  15.0  

NO. 37 38 39 40 41 

TIME ; 37.8  44.7  37.4  38.5  45.4  

ACPT ; 12.6  14.9  12.5  12.8  15.1  

NO. 46 47 48 49 50 

TIME 37.4  44.2  36.9  35 .1  41.9  

ACPT ; 12.5  14.7  12.3  11.7 14.0  

NO. 55 56 57 58 59 

TIME ; 33.6  40.5  33.2  33.3  31.0  

ACPT Î  11.2 13.5  11.1 33.3  31.0  

NO.  64  65 66 67 68 

TIME ; 41.4  39 .1  36.4  34 .1  26.4  

ACPT Î  13 .8  13.0  9 .1  8 .5  26.4  

NO. 73 74 75 76 

TIME ; 35.6  42.6  40.7  14 .9  

ACPT : 8.9  14.2  13.6  14.9  

6 
36.9  

12.3  

15 

39.3  

13 .1  

24 

41.6  

13 .9  

33 

37.7  

12.6 
42 

38 .1  

12.7  

51 

34.6  

11.5 
60 

31.9  

31.9  

69 

37.9  

9 .5  

7  

35.0  

11.7 

16 
40.4  

13.5  

25 

39.7  

13.2  

34 

40 .1  

13.4  

43 

36 .3  

12.1 
52 

35.9  

12.0 
61 

29.6  

29.6  

70 

44.9  

15 .0  

8 
41.9  

14.0  

17 

47.3  

15 .8  

26 
46.6  

15.5  

35 

46.9  

15.6  

44 

43 .1  

14.4  

53 

42.7  

14 .2  

62 
43.3  

14.4  

71  

43.0  

14.3  

9  

34.6  

11.5 

18 
40.0  

13.3  

27 

37.7  

12.6 
36 

39.7  

13.2  

45 

35 .8  

11.9 

54 

35.5  

11.8 
63 

41.1 

13.7  

72 

24 .1  

24.1  
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Table 6.15: Case 9: Average circuit processing times 

NO. 1  2 3  4  5  

TIME ; 30.8  38.3  30.8  35.7  43.2  

ACPT : 10.3  12.8  10.3  11.9 14.4  

NO. 10 11  12 13 14 

TIME : 40.9  48.4  40.9  39.3  46.8  

ACPT : 13.6  16 .1  13.6  13 .1  15.6  

NO.  19  20 21  22 23 

TIME : 37.4  44.9  37.4  40.8  48.3  

ACPT : 12.5  15.0  12.5  13.6  16 .1  

NO. 28 29 30 31  32 

TIME : 40.8  43.5  39.0  37.3  44.8  

ACPT : 13.6  14.5  13.0  12.4  14.9  

NO.  37 38 39 40 41  

TIME : 37.1  44.6  37 .1  36.8  44.3  

ACPT : 12.4  14.9  12.4  12.3  14.8  

NO.  46 47 48 49 50 

TIME : 35.7  43.2  35.7  34 .1  41.6  

ACPT : 11.9 14.4  11.9 11.4 13.9  

NO. 55 56 57 58 59 

TIME : 32.2  39.7  32.2  31.9  30.3  

ACPT : 10.7 13.2  10.7 10.6  10.1 

NO. 64 65 66 67 68 

TIME J 40.2  38.6  34.8  33.2  25 .1  

ACPT : 13.4  12.9  8 .7  8 .3  25.1  

NO. 73 74 75 76 

TIME 35.1  42.6  40.5  13.5  

ACPT : 8.8  14.2  13.5  13.5  

6  7  

35.7  34.0  

11.9 11.3 

15 16 

39.3  39.0  

13 .1  13.0  

24 25 

40.9  39.2  

13.6  13 .1  

33 34 

37.3  38.7  

12.4  12.9  

42 43 

36 .8  35.2  

12.3  11.7 

51 52 

34 .1  33.8  

11.4 11.3 

60 61  

29.9  28.3  

10.0  9 .4  

69 70 

36.7  44.2  

9 .2  14.7  

8  9  

41.6 34.1  

13.9  11.4 

17 18 

46.5  39.0  

15.5  13.0  

26 27 

46.7  37.3  

15.6  12.4  

35 36 

46.2  38.7  

15.4  12.9  

44 45 

42 .7  35.2  

14.2  11.7 

53 54 

41.3  33.8  

13.8  11.3 

62 63 

42.3  40.7  

14 .1  13.6  

71  72 

42.1  23.5  

14 .0  23.5  
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Table 6.16: Case 10: Average circuit processing limes 

NO. 1  2 3  4  5  
TIME ; 32.2  39.5  31.5  36.5  43.8  

ACPT : 10.7  13.2  10.5  12.2  14.6  
NO.  10  11  12 13 14 

TIME : 41.0  48.3  40.3  39.3  46.6  
ACPT : 13.7  16 .1  13.4  13 .1  15.5  

NO. 19 20 21  22 23 

TIME : 38.1  45.4  37.4  41.0  48.3  

ACPT : 12.7  15 .1  12.5  13.7  16 .1  

NO.  28  29 30 31  32 

TIME : 41.0  44.0  39 .1  38.0  45.3  

ACPT : 13.7  14.7  13.0  12.7  15 .1  

NO.  37 38 39 40 41  

TIME ; 37.7  45.0  37.0  38.3  45.6  

ACPT I 12.6  15.0  12.3  12.8  15.2  

NO.  46 47 48 49 50 

TIME : 36.5  43.8  35.8  34.7  42.0  

ACPT X 12.2  14.6  11.9 11.6 14.0  

NO. 55 56 57 58 59 

TIME I 33.4  40.7  32.7  31.9  30 .1  

ACPT z 11.1 13.6  10.9  10.6  10.0  

NO.  64  65 66 67 68 

TIME ; 41.9  40.1  35.9  34.2  25.2  

ACPT ; 14.0  13.4  9 .0  8 .6  6 .3  

NO.  73  74 75 76 

TIME ; 35.4  42.8  41.3  13.7  

ACPT : 8.9  14.3  13.8  13.7  

6 
35.8  

11.9 

15 

38.6  

12.9  

24 

40 .3  

13.4  

33 

37 .3  

12.4  

42 

37 .6  

12.5  

51 

34.1  

11.4  

60 
30.5  

10.2 
69 

37 .1  

9 .3  

7  

34.7  

11.6 
16 

39.8  

13.3  

25 

39 .2  

13 .1  

34 

39.5  

13.2  

43 

36 .5  

12.2 
52 

35 .1  

11.7 

61 
28 .8  

9.6  

70 

44.6  

14.9  

8 
42.0  

14.0  

17 

47 .1  

15.7  

26 
46.5 '  

15 .5  

35 

46.8  

15.6  

44 

43 .8  

14.6  

53 

42.4  

14 .1  

62 
43.4  

14.5  

71  
43.1  

14.4  

9  

34.0  

11.3 

18 
39.1  

13.0  

27 

37.3  

12.4  

36 

38.8  

12.9  

45 

35 .8  

11.9 

54 

34.5  

11.5 

63 
41.6  

13.9  

72 

23.5  

5 .9  
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Table 6.17: Effectivenesses of model \ 

Cases ! Q reduced /u's i ^ . RT \ 
1 All Qs = 1 none • 0.0125 i 89.5 • 
2 ix's on ; 0.0199 i 62.9 ! 
3 " //IR 0.0203 ; 60.2 • 
4 Q,sys =3 none ' 0.0216 ' 55.7 • 
5 ^sbq~^ none • 0.0262 : 49.5 

6 •: 0.0264 i 48.5 : 
7 =4 none j 0.0268 : 43.7 

8 A(7' /^31' /^33 i 0-0300 ; 38.9 
9 . Qjèg=3 none 0.0398 • 30.2 

10 Q^;^=4 none 0.0428 24.9 

6.3 Change Model, C 

As stated in Chapter 3, the system should be designed to absorb shocks from 

out-world and, or in the system, especially if the system is the battle system. There­

fore, in this thesis, the unit destruction due to the enemy's attacks are considered 

and simulated with hit probabilities changing their values according to the number 

of survival units. 

In this section, the change model. C, is analyzed by using the same procedures 

taken in the previous subsection. Then, the condition that the model has the best 

effectiveness will be investigated. 

6.3.1 Case 1: Original input 

The change model with one capacity for each C" process is analyzed by using 

the processing times assigned in Section 5.5.2. From Table 6.13, the maximum 
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average circuit processing time can be directly obtained. 

a = max{a((!)i), 0!((52),---, «(%)} 

= max{48.1, 52.0, •••, 22.6} 

= 65.7 (= q:(^2I)) • 

Therefore, the maximum throughput rate, $, is 

^ ̂  ^ ̂  ̂ ' 

Also, the maximum processing rate of each C'^ process, (p, is 

't'cmd = /76 = 2& = '"442 

^cic — /68 — — .0215 

hg = /69 = ^ = -0172 

'f'sbg = -^70 =  ̂= -0162 

^ibg - ^58 = . 

The above results indicate that the maximum throughput rate of the system is 

determined only by the structural constraint since 6^% is the unique critical circuit 

of the net. Therefore, in this case, two possible remedies to improve the effectiveness 

of the overall system' can be considered: either increase the capacities available to 

the system or reduce the task processing times of its subprocesses or both. 

Therefore, as performed in the previous section, the processing times on the 

critical circuit are reduced as the treatment to get a more effective Change system. 

Then, this result is compared to the original and its effect by increasing the capacity 

investigated. 
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Table 6.18: Case 1: Task processing history 

1 2 3  4  5  6  7  8  

1  0.0  85.4  175.2  253.1  328.9  407.2  481.5  560.1  

2  0 .0  85.4  175.2  253.1  328.9  407.2  481.5  560.1  

3  0 .0  85.4  175.2  253.1  328.9  407.2  481.5  560.1  

4  0 .0  85.4  175.2  253.1  328.9  407.2  481.5  560.1  

5  0 .0  85.4  175.2  253.1  328.9  407.2  481.5  560.1  

6  1 .0  86.3  176.2  253.9  329.7  408.1  482.4  560.6  

7  1 .0  86.3  176.2  253.9  329.7  408.1  482.4  560.6  

8  0 .9  86.2  176.1  253.6  329.5  407.6  481.6  560.3  

9  0 .9  86.2  176.1  253.6  329.5  407.6  481.6  560.3  

10 1 .4  86.7  176.5  254.5  330.1  408.2  482.4  560.7  

11  6 .8  89.7  178.7  256.0  331.1  409.3  482.8  561.6  

12 12 .1  94.0  182.1  260.8  334.5  414.3  489.5  565.5  

13 12 .1  94.0  182.5  261.1  335.0  414.8  490.2  566.1  

14 4 .6  89.8  182.2  257.8  333.6  412.2  487.8  563.1  

15 12 .1  94.0  182.1  260.8  334.5  414.3  489.5  565.5  

16 15.3  98.0  185.9  264.3  340.2  417.4  492.9  567.6  

17 21.9  102.5  191.1  274.0  349.4  428.3  504.3  580.5  

18 22 .1  108.0  194.2  273.6  348.1  425.1  501.9  575.9  

19 21.9  102.5  191.1  274.0  349.4  428.4  504.3  580.6  

20 27.3  107.9  195.3  279.3  354.7  431.8  510.7  585.2  

21  32.1  110.7 199.9  283.3  359.2  436.1  516.8  588.3  

22 •  37 .1  116.4  204.5  287.7  362.9  439.5  521.7  592.0  

23 46 .8  126.2  213.9  296.3  371.4  452.4  532.1  600.0  

24 46.8  126.2  213.9  296.3  371.4  452.4  532.1  600.0  

25 46.8  126.2  213.9  296.3  371.4  452.4  532.1  600.0  

26 48.3  132.8  218.7  295.0  371.3  449.1  528.1  594.8  

27 56.3  144.8  227.7  308.0  386.2  463.6  539.2  606.3  

28 56.3  144.8  227.7  308.0  386.2  463.6  539.2  .  606.3  

29 56.3  144.8  227.7  308.0  386.2  463.6  539.2  606.3  

30 56.3  144.8  227.7  308.0  386.2  463.6  539.2  606.3  

31  56.3  144.8  227.7  308.0  386.2  463.6  539.2  606.3  

32 57.9  146.7  229.3  309.2  387.7  465.1  540.5  607.7  

33 58.5  146.3  229.5  309.5  387.7  465.2  540.5  607.4  

34 70 .0  157.6  237.0  315.9  395.1  471.5  547.4  611.5 

35 70.0  157.6  237.0  315.9  395.1  471.5  547.4  611.5 

36 70.0  157.6  237.0  315.9  395.1  471.5  547.4  611.5 

37 70 .0  157.6  237.0  315.9  395.1  471.5  547.4  611.5 

38 71.4  159.7  238.2  316.8  395.9  472.3  547.8  611.7 

39 80.3  168.2  245.7  322.3  399.3  474.0  550.3  613.3  

40 80.3  168.2  245.7  322.3  399.3  474.0  550.3  613.3  
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Table 6.18: (Continued) 

1 2 3 4  5  6  7  8  

41 67.6  156.3  238.7  316.0  396.3  472.5  548.4  615.6  

42 67 .6  156.3  238.7  316.0  396.3  472.5  548.4  615.6  

43 85 .4  175.2  253.1  328.9  407.2  481.5  560.1  624.2  

44 0 .0  85.4  175.2  253.1  328.9  407.2  481.5  560.1  

59 0 .0  85.4  175.2  253.1  328.9  407.2  481.5  560.1  

9  10 11  12 13 14 15 

1  624.2  691.5  758.8  816 .9  882.6  949.5  991.7  

2  624.2  691.5  758.8  816 .9  882.6  949.5  991.7  

3  624.2  691.5  758.8  816 .9  882.6  949.5  991.7  

4  624.2  691.5  758.8  816 .9  882.6  949.5  991.7  

5  624.2  691.5  758.8  816 .9  882.6  949.5  991.7  

6  624.9  692.2  759.5  817 .5  883.2  950.1  992.1  

7  624.9  692.2  759.5  817 .5  883.2  950.1  992.1  

8  624.5  691.6  759.0  817 .0  882.6  949.6  991.8  

9  624.5  691.6  759.0  817 .0  882.6  949.6  991.8  

10 625.0  692.1  759.6  817 .2  882.8  949.7  992.0  

11  625.0  692.2  759.9  817 .1  882.6  949.7  991.9  

12 630.1  696.2  763.1  820 .6  885.4  951.1  994.5  

13 630.7  697.2  763.8  821 .2  886.1  951.8  995.1  

14 627.3  695.2  762.5  820 .1  885.7  951.9  994.4  

15 630.1  696.2  763.1  820 .6  885.4  951.1  994.5  

16 632.9  698.5  764.9  822 .3  887.8  952.0  995.8  

17 644.1  710.8  787.9  850 .4  914.6  994.1  1034.3  

18 642.2  707.3  773.9  833 .5  897.1  962.3  1007.4  

19 644.1  710.8  787.9  850 .4  914.6  994.2  1034.3  

20 648.5  716.7  794.3  856 .2  917.8  1001.4  1041.8  

21 653.9  720.2  800.4  862 .2  929.2  1004.0  1044.8  

22 657.9  726.1  804.9  865 .5  933.5  1009.0  1051.1 

23 665.8  741.0  818.4  873 .0  944.7  1018.4  1058.6  

24 665.8  741.0  818.4  873 .0  944.7  1018.4  1058.6  

25 665.8  741.0  818.4  873 .0  944.7  1018,4 1058.6  
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Table 6.18: (Continued) 

9 10 11  12 13 14 15 

26 662.0  735.5  799.6  853.0  923.8  981.5  1027.8  

27 672.7  748.6  810.1  869.2  933.6  993.6  1042.4  

28 672.7  748.6  810.1  869.2  933.6  993.6  1042.4  

29 672.7  748.6  810.1  869.2  933.6  993.6  1042.4  

30 672.7  748.6  810.1  869.2  933.6  993.6  1042.4  

31  672.7  748.6  810.1  869.2  933.6  993.6  1042.4  

32 673.6  749.7  811.0 870.3  934.8  994.4  1043.2  

33 674.3  749.5  811.0 869.9  934.5  994.3  1043.2  

34 678.6  755.6  817.8  874.4  939.5  996.9  1045.2  

35 678.6  755.6  817.8  874.4  939.5  996.9  1045.2  

36 678.6  755.6  817.8  874.4  939.5  996.9  1045.2  

37 678.6  755.6  817.8  874.4  939.5  996.9  1045.2  

38 678.8  755.9  818.2  874.5  939.5  997.0  1045.2  
39 680.4  758.0  818.7  874.8  939.8  997.3  1045.2  

40 680.4  758.0  818.7  874.8  939.8  997.3  1045.2  

41 681.8  753.9  817.6  874.0  939.9  1000.0  1048.0  

42 681.8  753.9  817.6  874.0  939.9  1000.0  1048.0  

43 691.5  765.2  828.4  882.6  949.5  1008.0  1054.5  

44 624.2  691.5  758.8  816.9  882.6  949.5  991.7  

59 624.2  691.5  758.8  816.9  882.6  949.5  991.7  
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Table 6.19: Case 1: Average processing times 

PROCESS PASSING PROCESS AVE. TIME HOLDING TOTAL AVE. ACT. 

NO. TIMES TIME FOR PROCESS TIME TIME PROC.TIME 

1  466 425.67 0 .91 7501.97 7927.64 17.01 

2  584 625.55 1 .07 3126.73 3752.29 6 .43 

3  584 347.13 0 .59 134.06 481.19 0 .82 

4 584 198.19 0 .34 0 .00 198.19 0 .34 

5 584 431.99 0 .74 0 .00 431.99 0 .74 

6  584 0 .00 0 .00 3320.31 3320.31 5 .69 

7 584 2027.71 3 .47 0 .00 2027.71 3 .47 

8  584 0 .00 0 .00 283.02 283.02 0 .48 

9  584 906.26 1 .55 0 .00 906.26 1 .55 

10 584 2465.50 4 .22 506.40 2971.90 5 .09 

11 584 0 .00 0 .00 2348.66 2348.66 4 .02 

12 584 0 .00 0 .00 299.21 299.21 0 .51 

13 584 5726.40 9 .81 941.90 6668.30 11.42 

14 584 0 .00 0 .00 7960.73 7960.73 13.63 

15 584 1649.61 2 .82 0 .00 1649.61 2 .82 

16 584 0 .00 0 .00 5317.96 5317.96 9 .11 

17 466 0 .00 0 .00 11.53 11.53 0 .02 

18 584 3651.84 6 .25 0 .00 3651.84 6 .25 

19 466 3724.99 7 .99 1040.82 4765.80 10.23 

20 466 0 .00 0 .00 2302.30 2302.30 4 .94 

21 466 2162.79 4 .64 0 .00 2162.79 4 .64 

22 466 4645.16 9 .97 0 .00 4645.16 9 .97 

23 466 0 .00 0 .00 22683.98 22683.98 48.68 

24 466 0 .00 0 .00 0 .00 0 .00 0 .00 
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Table 6.19: (Continued) 

PROCESS 

NO. 

PASSING PROCESS 

TIMES TIME 

AVE.  T IME HOLDING 

FOR PROCESS TIME 

TOTAL 

TIME 
AVE.  ACT.  

PROC.TIME 

25 466 959.96 2 .06 0 .00 959.96 2 .06 
26 584 7027.63 12.03 0 .00 7027.63 12.03 
27 584 0 .00 0 .00 14838.45 14838.45 25.41 
28 584 0 .00 0 .00 0 .00 0 .00 0 .00 
29 584 0 .00 0 .00 0 .00 0 .00 0 .00 
30 584 721.85 1 .24 0 .00 721.85 1 .24 
31 584 747.97 1 .28 0 .00 747.97 1 .28 
32 584 3668.90 6 .28 0 .00 3668.90 6 .28 
33 584 4213.10 7 .21 0 .00 4213.10 7 .21 
34 584 0 .00 0 .00 7604.75 7604.75 13.02 
35 584 0 .00 0 .00 0 .00 0 .00 0 .00 
36 584 1715.45 2 .94 5462.39 7177.84 12.29 
37 584 359.56 0 .62 0 .00 359.56 0 .62 

38 584 1787.14 3 .06 0 .00 1787.14 3 .06 
39 584 0 .00 0 .00 5194.92 5194.92 8 .90 
40 584 1868.21 3 .20 3163.12 5031.33 8 .62 
41 584 0 .00 0 .00 7000.31 7000.31 11.99 
42 584 1781.67 3 .05 4825.92 6607.59 11.31 
43 584 0 .00 0 .00 0 .00 0 .00 0 .00 
44 584 0 .00 0 .00 0 .00 0 .00 0 .00 

59 584 0 .00 0 .00 40549.14 40549.14 69.43 
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Table 6.20: Case 1: Average circuit processing times 

NO. 1  2 3 4  5  
TIME : 48.1  52.0  49.2  58.0  62.0  
ACPT : 48.1  52.0  49.2  58.0  62.0  
NO. 10 11  12 13 14 

TIME ; 61.8  65.7  62.9  60.0  64.0  
ACPT : 61.8  65.7  62.9  60.0  64.0  
NO. 19 20 21  22 23 

TIME ; 53.1  57.0  54 .1  61.5  65.5  
ACPT : 53.1  57.0  54 .1  61.5  65.5  
NO. 28 29 30 31  32 

TIME : 61.5  55.7  55.6  52.8  56.7  
ACPT : 61.5  55.7  55.6  52.8  56.7  
NO. 37 38 39 40 41  

TIME : 57.1  61.0  58.2  51.9  55.8  
ACPT : 57.1  61.0  58.2  51.9  55.8  
NO. 46 47 48 49 50 

TIME : 57.7  61.6  58.8  56.0  59.9  
ACPT ; 57.7  61.6  58.8  56.0  59.9  
NO. 55 56 57 58 59 

TIME ; 49.6  53.6  50.7  55.0  53.3  
ACPT : 49.6  53.6  50.7  55.0  53.3  
NO. 64 65 66 67 68 

TIME : 52.3  50.5  51.3  49.5  46.5  

ACPT : 52.3  50.5  51.3  49.5  46.5  
NO. 73 74 75 76 

TIME : 56.5  60.2  57.5  22.6  

ACPT ; 56.5  60.2  57.5  22.6  

6 
59.1  

59.1  

15 

61.1 
61.1 

24 

6 2 . 6  
62 .6  

33 

53.9  

53.9  

42 

53.0  

53.0  

51  

57.0  

57.0  

60 
48.7  

48.7  

69 

58.2  

58.2  

7  
56.3  

56.3  

16 
54.8  

54.8  

25 

59.8  

59.8  

34 

58.8  

58.8  

43 

50 .1  

50.1  

52 

51.4  

51.4  

61 
46.9  

46.9  

70 

61.9  

61.9  

8 
60.2  
60.2  

17 

58.7  

58.7  

26 
63.7  

63.7  

35 

6 2 . 8  
6 2 . 8  

44 

54 .1  

54.1  

53 

55.3  

55.3  

62 
54.9  

54.9  

71  

59.2  

59.2  

9  
57.4  

57.4  

18 
55.9  

55.9  

27 

53 .9  

53.9  

36 

59.9  

59.9  

45 

51 .2  

51.2  

54 

52.5  

52.5  

63 

53.2  

53.2  

72 

44.8  

44.8  
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Table 6.21: Reduced mean processing times of circuit. ^23 

place 10 ; 13 19 21 22 : 25 ' 26 30 ! 32 37 
O

O
 C

O
 

old Ji 8 1 8 8 5 10 2 10 2 10 ' 2 10 : 
new ]I 4.8 , 4.8 ' 4.8 3 6 ' 1.2 ' 6 1.2 , 6 1.2 6 . 

6.3.2 Case 2; Reduced processing times on 8n 

Processing times of the critical circuit. #1^, are reduced as shown in Table 6.14. 

In this case, the reduced amount of the processing time is assumed to be the max­

imum available to each process. 

From Table 6.IT. maximum average circuit processing time. a. is 

a = max|a{^|), • • •. Q(6"70)| 

= max{30.4. 32.6. • • •, 13.6} 

= 44.1 (= a(6i5)) . 

Therefore, the maximum throughput rate is <& = 1 a = I 47.1 = .0227. Comparing 

this result to the previous one =-0140). this model shows a 49"^ increase in 

terms of the maximum throughput rate. Xow. the maximum processing rates for 

this case are 

®cmû! " -^76 = ^ = 0T35 

<^ac " -^72 = ^ = 0345 

Hg = ^3 = 3^ = 0278 

't'sbg = /74 = = 0262 

'f'ibg -̂ 59 =  ̂= 0264 
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The maximum throughput rate for this case is also determined by the structural 

constraint, since the circuit, 6^5, is also the critical circuit which consists of the 

processes covering the overall system, not any specific 6'^ process. Therefore, as for 

the previous case, the remedy to improve the system effectiveness is either increase 

the Qsys or reduce the processing times of the critical circuit. 

6.3.3 Case 3: Reduced processing time of 6^^ 

By comparing the previous critical circuit to the present critical circuit in terms 

of the processing times of their tasks, a bottle-neck can be easily found, since the 

other processing times are equivalent to each other except ^11 Pl8' P31' 

and P33 in Therefore, the only way to improve is to reduce all processing times 

related to those tasks. Reducing and by the same rate as the previous 

case, then the maximum throughput rate is changed from $ = 1/0(625) = .0227 

to $ = 1/0(621) — 1/40.9 = .0244. (See Table 6.23.) There is no way to improve 

the model effectiveness more with the processing times, since not only the critical 

circuit, 622, characterizes the $, but also all related processing times to the critical 

circuit have been reduced. Therefore, the rest of the remedies to improve the system 

effectiveness is to increase the capacity of the system. Then, the effect by increasing 

the system capacity to its maximum will be investigated. 

6.3.4 Case 4: Maximum system capacity 

Taking the system's capacity as three, the result from Table 6.24 shows a 24.6% 

improvement ($4 = l/6yQ= .0304). Also, the average circuit processing rate of each 
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Table 6.22: Case 2: Average circuit processing times 

NO. 1  2 3  4  5  

TIME : 30.4  32.6  35.0  36.5  38.7  

ACPT : 30.4  32.6  35.0  36.5  38.7  

NO. 10 11 12 13 14 

TIME : 38.5  40.7  43 .1  39.6  41.8  

ACPT : 38.5  40.7  43 .1  39.6  41.8  

NO. 19 20 21  22 23 

TIME ; 36.5  38.7  41 .1  38.3  40.5  

ACPT : 36.5  38.7  41.1 38.3  40.5  

NO. 28 29 30 31  32 

TIME ; 38.3  34.6  39.8  36.3  38.5  

ACPT : 38.3  34.6  39.8  36.3  38.5  

NO. 37 38 39 40 41  

TIME : 38.3  40.6  42.9  34.2  36.4  

ACPT : 38.3  40.6  42.9  34.2  36.4  

NO. 46 47 48 49 50 

TIME ; 36.1  38.3  40.7  37 .2  39.4  

ACPT : 36.1  38.3  40.7  37 .2  39.4  

NO. 55 56 57 58 59 

TIME : 34.8  37.0  39.3  36.8  37.9  

ACPT ; 34.8  37.0  39.3  36.8  37.9  

NO. 64 65 66 67 68 

TIME : 33.1  34.2  31.9  33.0  27.9  

ACPT ; 33.1  34.2  31.9  33.0  27.9  

NO. 73 74 75 76 

TIME : 36.0  38.2  37.2  13.6  

ACPT : 36.0  38.2  37.2  13.6  

6 
41.0  

41.0  

15 

44 .1  

44.1  

24 

42.8  

42.8  

33 
40.8  
40.8  

42 

38.8  

38.8  

51 

41.7  

41.7  

60 
34.4  

34.4  

69 

35.0  

35.0  

7  

37.5  

37.5  

16 
35.5  

35.5  

25 

39.3  

39.3  

34 

37.3  

37,3  

43 

35 .3  

35.3  

52 

33.7  

33.7  
61 

35.5  

35.5  

70 

37 .1  

37.1  

8 
39.7  

39.7  

17 

37.7  

37.7  

26 
41.5  

41.5  

35 

39.5  

39.5  

44 

37 .5  

37.5  

53 

35 .9  

35.9  

62 
34.1  

34.1  

71 

36.2  

36.2  

9  

42 .1  

42.1  

18 
40.0  

40.0  

27 

40.8  

40.8  

36 

41.8  

41.8  

45 

39 .8  

39.8  

54 

38.3  

38.3  

63 

35 .1  

35.1  

72 

29.0  

29.0  
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Table 6.23; Case 3; Average circuit processing times 

NO. 1  2 3 4  5  
TIME : 30.4  32.8  31 .1  36.4  38.9  
ACPT : 30.4  32.8  31 .1  36.4  38.9  
NO. 10 11  12 13 14 

TIME : 38.5  40.9  39.2  37.6  40.0  
ACPT : 38.5  40.9  39.2  37.6  40.0  
NO. 19 20 21  22 23 

TIME : 34.5  37.0  35.2  38.2  40.7  
ACPT : 34.5  37.0  35.2  38.2  40.7  
NO. 28 29 30 31  32 

TIME : 38.2  34.8  35.9  34.2  36.7  
ACPT : 38.2  34.8  35.9  34.2  36.7  
NO. 37 38 39 40 41  

TIME ; 36.3  38.8  37.0  34.2  36.6  
ACPT : 36.3  38.8  37.0  34.2  36.6  
NO. 46 47 48 49 50 

TIME ; 36.1  38.6  36.8  35.2  37.6  
ACPT : 36.1  38.6  36.8  35.2  37.6  
NO. 55 56 57 58 59 

TIME ; 32.8  35.2  33.5  33.0  32 .1  

ACPT : 32.8  35.2  33.5  33.0  32 .1  

NO. 64 65 66 67 68 
TIME : 33.1  32.2  31.9  31.0  27.9  
ACPT ; 33.1  32.2  31.9  31.0  27.9  
NO. 73 74 75 76 

TIME Î  34 .0  36.2  35.3  13.6  

ACPT : 34.0  36.2  35.3  13.6  

6 
37.1  

37.1  

15 

38.3  

38.3  

24 

38.9  

38.9  

33 

34.9  

34.9  

42 

34.9  

34.9  

51 

35.9  

35.9  

60 
30.6  

30.6  

69 

34.9  

34.9  

7  

35.5  

35.5  

16 
35.4  

35.4  

25 

37 .3  

37.3  

34 

37 .2  

37.2  

43 

33 .3  

33.3  

52 

33.7  

33.7  

61 
29.7  

29.7  

70 

37.2  

37.2  

8 
38.0  

38.0  

17 

37.9  

37.9  

26 
39.8  

39.8  

35 

39.7  

39.7  

44 

35.7  

35.7  

53 

36 .1  

36.1  

62 
34.1  

34.1  

71 

36.2  

36.2  

9  

36.2  

36.2  

18 
36.1  

36.1  

27 

34 .9  

34.9  

36 

37.9  

37.9  

45 

34 .0  

34.0  

54 

34.4  

34.4  

63 

33.2  

33.2  

72 

27.0  

27.0  
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6'^ process is 

^cnid = /76 

^cic - /68 

= /69 

^sbg = /70 

- /58 

1 

12.9 
1 

1 
3L6 
1 

32.9 
1 

3LÏ 

.0775, 

.0380, 

.0316, 

.0304, 

.0322 

Therefore, from the above result, the maximum processing rate of the SBG process 

reflects the maximum throughput rate of the overall net in this case. Now, there 

is only one possible alternative to improve the system effectiveness, i.e., increasing 

the SBG's capacity, since the processing times related to the critical circuit, 

has been already reduced. 

6.3.5 Case 5: Maximum SBG capacity 

By increasing the capacity of the SBG process up to its maximum (Q^^^=3), 

the maximum throughput rate can be obtained from Table 6.25 as follows. 

* " &LÔ = 0294 . 

The result is quite close to that of the previous case (3% decreasing in terms of $). 

This difference can be regarded as the difference due to applying different random 

sequences to the process as processing times are calculated. This result also implies 

that only increasing the SBG capacity does not affect the model effectiveness, since 

the average processing time of the critical circuit, is influenced by tasks in the 

BG process. Therefore, further remedy should be considered. 
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Table 6.24: Case 4; Average circuit processing times 
V-

NO. 1  2 3  4  5  
TIME : 28.4  29.8  30.2  33.5  34.9  
ACPT : 9.5  9 .9  10 .1  11.2 11.6 
NO. 10 11 12 13 14 

TIME : 35.1  36.4  36.8  34.0  35.4  
ACPT ; 11.7 12.1  12.3  11.3 11.8 
NO. 19 20 21  22 23 

TIME : 31.1 32.5  32.8  34.9  36.3  

ACPT : 10.4  10.8  10.9  11.6 12.1  

NO. 28 29 30 31 32 

TIME : 34.9  31.1 33.7  30.9  32.3  

ACPT ; 11.6 10.4  11.2 10.3  10.8  

NO. 37 38 39 40 41  

TIME ; 32.7  34.0  34.4  30.8  32.2  

ACPT ; 10.9  11.3 11.5 10.3  10.7 

NO. 46 47 48 49 50 

TIME : 33.3  34.7  35.0  32.3  33.6  

ACPT : 11.1 11.6 11.7 10.8  11.2 

NO. 55 56 57 58 59 

TIME ; 31.0  32.4  32.7  31 .1  30.0  

ACPT ; 10.3  10.8  10.9  31.1  30.0  

NO. 64 65 66 67 68 

TIME ; 28.8  27.8  28.7  27.6  26.3  

ACPT : 28.8  27.8  28.7  27,6  26.3  

NO. 73 74 75 76 

TIME ; 30.6  31.8  30.7  12.9  

ACPT : 30.6  31.8  30.7  12.9  

6 
35.3  

11.8 
15 

35.8  

11.9 

24 

36.6  

12.2 
33 

32.6  

10.9  

42 

32 .5  

10.8 
51 

34.0  

11.3 

60 
29.9  

29.9  
69 

31.6  

31.6  

7  

32.5  

10.8 
16 

32.1  

10.7 

25 

33.8  

11.3 

34 

33.7  

11.2 
43 

29.7  

9 .9  

52 

32 .1  

10.7 

61 
28.8  
28 .8  

70 

32.9  

32.9  

8 
33.9  

11.3 

17 

33.5  

11.2 
26 

35.2  

11.7 

35 

35 .1  

11.7 

44 

31.1 

10.4  

53 

33 .4  

11.1 
62 

30.0  
30.0  

71  

31.7 

31.7 

9 

34.2  

11.4 

18 
33.9  

11.3 

27 

32.6  

10.9  

36 

35.5  

11.8 
45 

31.5  

10.5  

54 

33.8  

11.3 

63 

28.9  
28.9  

72 

25.3  

25.3  
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Table 6.25: Case 5: Average circuit processing times 

NO. 1  2 3  4  5  
TIME : 30.1  31.2  32.3  35.8  36.9  

ACPT : 10.0  10.4  10.8  11.9 12.3  
NO. 10 11  12 13 14 

TIME : 37.7  38.8  39.9  36.3  37.4  
ACPT : 12.6  12.9  13.3  12 .1  12.5  
NO. 19 20 21 22 23 

TIME ; 33.0  34.1  35.2  37.5  38.6  
ACPT : 11.0 11.4 11.7 12.5  12.9  
NO. 28 29 30 31  32 

TIME : 37.5  32.8  36.4  32.8  33.9  
ACPT : 12.5  10.9  12 .1  10.9  11.3 

NO. 37 38 39 40 41  
TIME : 34.8  35.9  37.0  33.0  34 .1  

ACPT : 11.6 12.0  12.3  11.0 11.4 

NO. 46 47 48 49 50 

TIME : 35.5  36.6  37.7  34 .1  35.2  

ACPT : 11.8 12.2  12.6  11.4 11.7 

NO. 55 56 57 58 59 

TIME : 32.3  33.4  34.5  33.6  32.2  

ACPT : 10.8  11.1 11.5 33.6  32.2  

NO. 64 65 66 67 68 

TIME ; 30.9  29.5  30.8  29.4  27.9  

ACPT ; 10.3  9 .8  30.8  29.4  27.9  

NO. 73 74 75 76 

TIME ; 32.6  33.9  32.7  13.9  

ACPT : 32.6  11.3 10.9  13.9  

6 
38.0  

12.7  

15 

38.4  

12.8 
24 

39.6  

13.2  

33 

35.0  

11.7 

42 

35.2  

11.7 

51 

36.3  

12.1 
60 

31.8  

31.8  

69 

34.0  

34.0  

7  

34.4  

11.5 

16 
34.5  

11.5 

25 

36.0  

12.0 
34 

36.2  

12.1 
43 

31.6  

10.5  

52 

33.7  

11.2 
61 

30.4  

30.4  

70 

35.4  

11.8 

8 
35.5  

11.8 
17 

35.6  

11.9 

26 
37.1  

12.4  

35 

37.4  

12.5  

44 

32.7  

10.9  

53 

34.8  

11.6 
62 

32.1  

10.7  

71  

34.2  

11.4 

9 

36.6  

12.2 
18 

36.7  

12.2 
27 

35.0  

11.7 

36 

38.4  

12.8 
45 

33 .8  

11.3 

54 

35.9  

12.0 
63 

30.7  

10.2 
72 

26.5  

26.5  
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6.3.6 Case 6: Maximum BG capacity 

As stated in Case 5, the circuit, is influenced by other processes which 

the processes of the circuit is going along. Therefore, the remedy taken in this case 

is to increase the circuit which has the next biggest average circuit processing time. 

By increasing the BG capacity to its maximum, the maximum throughput rate is 

increased from $5 = .0294 to = .0308. However, comparing this to $4, they are 

almost same. Therefore, the capacity increasing of process with the next biggest 

circuit is performed. 

By iterating these procedures, the final best effective model structure is deter­

mined. All input changes and results are summarized in Table 6.30. Note that the 

effectiveness of the final model is not absolutely the best, but it is the best under 

the given conditions. 

Note that results of both models-model N and model C- does not consider the 

personnel training cost and the manpower cost by increasing the process capacities. 

Therefore, the cost/effectiveness analysis is an another matter to be analyzed, but 

it is not a concern in this thesis. 
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Table 6.26: Case 6: Average circuit processing times 

NO. 1  2 3  4  5  
TIME : 29.0  30.1  31.4  34 .1  35.1  
ACPT : 9.7  10.0  10.5  11.4 11.7 
NO. 10 11 12 13 14 

TIME : 35.6  36.7  38.0  34.5  35.5  
ACPT : 11.9 12.2  12.7  11.5 11.8 
NO. 19 20 21  22 23 

TIME : 31.7 32.7  34 .1  35.3  36.4  
ACPT : 10.6  10.9  11.4 11.8 12.1  
NO. 28 29 30 31  32 

TIME : 35.3  31.3  34.9  31.4  32.4  
ACPT : 11.8 10.4  11.6 10.5  10.8  
NO. 37 38 39 40 41  

TIME : 33.5  34.5  35.9  31.8  32.8  
ACPT ; 11.2 11.5 12.0  10.6  10.9  
NO. 46 47 48 49 50 

TIME : 33.9  35.0  36.3  32.8  33.9  

ACPT : 11.3 11.7 12.1  10.9  11.3 
NO. 55 56 57 58 59 

TIME : 31.1  32.1  33.5  32.5  31.4  
ACPT : 10.4  10.7  11.2 32.5  31.4  
NO. 64 65 66 67 68 

TIME ; 29.7  28.6  29.2  28 .1  27.4  

ACPT : 9.9  9 .5  7 .3  7 .0  27.4  

NO. 73 74 75 76 

TIME ; 31.0  32.2  31.4  14.2  

ACPT ; 7.7  10.7  10.5  14.2  

6 
36.5  

12.2 
15 

36.9  

12.3  

24 

37.7  

12.6 
33 

33.8  

11.3 

42 

34 .2  

11.4 

51 

35.2  

11.7 

60 
30.8  

30.8  

69 

32 .1  

8 . 0  

7 

33.0  

11.0 
16 

32.8  

10.9  

25 

34.2  

11.4 

34 

34.6  

11.5 

43 

30.7  

10.2 
52 

32.2  

10.7  

61 
29.7  

29.7  

70 

33.3  

11.1 

8 
34.0  

11.3 

17 

33.8  

11.3 

26 
35.3  

11.8 
35 

35.6  

11.9 

44 

31.7 

10.6 
53 

33.2  

11.1 
62 

30.4  

10.1 
71 

32.5  

10.8 

9 

35.4  

11.8 
18 

35.2  

11.7 

27 

33.8  

11.3 

36 

37.0  

12.3  

45 

33 .1  

11.0 
54 

34.6  

11.5 

63 

29.3  

9 .8  

72 

26.3  

26.3  
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Table 6.27: Case 7: Average circuit processing times 

NO. 1 2 3 4 5 
TIME : 29.0 30.7 32.3 34.3 36.0 
ACPT ; 9.7 10.2 10.8 11.4 12.0 
NO. 10 11 12 13 14 
TIME : 36.1 37.8 39.4 34.7 36.4 
ACPT : 12.0 12.6 13.1 11.6 12.1 
NO. 19 20 21 22 23 
TIME : 31.6 33.3 34.8 35.9 37.7 
ACPT : 10.5 11.1 11.6 12.0 12.6 
NO. 28 29 30 31 32 
TIME : 35.9 32.4 36.1 31.4 33.1 
ACPT : 12.0 10.8 12.0 10.5 11.0 
NO. 37 38 39 40 41 
TIME : 33.7 35.5 37.0 32.0 33.7 
ACPT ; 11.2 11.8 12.3 10.7 11.2 
NO. 46 47 48 49 50 
TIME ; 34.2 35.9 37.5 32.8 34.5 
ACPT ; 11.4 12.0 12.5 10.9 11.5 
NO. 55 56 57 58 59 
TIME ; 31.8 33.5 35,1 33.4 32.0 
ACPT : 10.6 11.2 11.7 11.1 10.7 
NO. 64 65 66 67 68 
TIME : 30.3 28.8 29.4 27.9 27.2 
ACPT : 10.1 9.6 7.3 7.0 27.2 
NO. 73 74 75 76 
TIME : 31.1 32.8 32.0 13.9 
ACPT : 7.8 10.9 10.7 13.9 

6 
37.6 
12.5 
15 
38.0 
12.7 
24 
39.2 
13.1 
33 
34.7 
11.6 
42 
35.3 
11.8 
51 
36.0 
12.0 
60 
32.5 
10.8 
69 
32.5 
8.1 

7 
32.9 
11.0 
16 
33.0 
11.0 
25 
34.5 
11.5 
34 
35.2 
11.7 
43 
30.6 
10.2 
52 
33.2 
11.1 
61 
31.1 
10.4 
70 
34.2 
11.4 

8 
34.6 
11.5 
17 
34.7 
11.6 

26 
36.2 
12.1 
35 
36.9 
12.3 
44 
32.3 
10.8 
53 
34.9 
11.6 
62 
31.0 
10.3 
71 
33.4 
11.1 

9 
36.2 
12.1 
18 
36.3 
12.1 
27 
34.7 
11.6 
36 
38.4 
12.8 
45 
33.9 
11.3 
54 
36.5 
12.2 
63 
29.6 
9.9 
72 
25.8 
25.8 
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Table 6.28: Case 8: Average circuit processing times 

NO. 1 2 3 4 5 
TIME ; 28.5 29.8 31.1 34.2 35.6 
ACPT ; 9.5 9.9 10.4 11.4 11.9 
NO. 10 11 12 13 14 

TIME ; 36.0 37.4 38.7 34.6 36.0 
ACPT ; 12.0 12.5 12.9 11.5 12.0 
NO. 19 20 21 22 23 

TIME ; 31.3 32.7 33.9 35.8 37.2 
ACPT : 10.4 10.9 11.3 11.9 12.4 
NO. 28 29 30 31 32 

TIME : 35.8 31.6 35.2 31.1 32.4 
ACPT : 11.9 10.5 11.7 10.4 10.8 
NO. 37 38 39 40 41 

TIME : 33.6 35.0 36.3 31.7 33.1 
ACPT ; 11.2 11.7 12.1 10.6 11.0 
NO. 46 47 48 49 50 

TIME 1  34.1 35.4 36.7 32.6 34.0 
ACPT ; 11.4 11.8 12.2 10.9 11.3 
NO. 55 56 57 58 59 

TIME : 31.0 32.3 33.6 32.8 31.4 
ACPT : 10.3 10.8 11.2 10.9 10.5 
NO. 64 65 66 67 68 
TIME ; 29.9 28.4 29.1 27.7 26.9 
ACPT J 10.0 9.5 7.3 6.9 9.0 
NO. 73 74 75 76 

TIME • 31.0 32.5 31.7 13.5 
ACPT : 7.8 10.8 10.6 13.5 

6 
36.9 
12.3 
15 
37.2 
12.4 
24 
38.5 
12.8 
33 
33.7 
11.2 
42 
34.4 
11.5 
51 
35.3 
11.8 
60 
31.2 
10.4 
69 
32.4 
8.1 

7 
32.8 
10.9 
16 
32.7 
10.9 
25 
34.4 
11.5 
34 
35.0 
11.7 
43 
30.3 
10.1 
52 
32.4 
10.8 
61 
29.8 
9.9 
70 
33.9 
11.3 

8 
34.1 
11.4 
17 
34.1 
11.4 

26 
35.7 
11.9 
35 
36.4 
12.1 
44 
31.7 
10.6 
53 
33.8 
11.3 
62 
30.6 
10.2 
71 
33.2 
11.1 

9 
35.4 
11.8 
18 
35.4 
11.8 
27 
33.7 
11.2 
36 
37.7 
12.6 
45 
33.0 
11.0 
54 
35.1 
11.7 
63 
29.2 
9.7 
72 
25.4 
8.5 
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NO. 1 2 3 4 5 
TIME ; 29.8 31.9 30.3 35.6 37.7 
ACPT : 9.9 10.6 10.1 11.9 12.6 
NO. 10 11 12 13 14 
TIME ; 37.8 39.9 38.2 37.2 39.3 
ACPT : 12.6 13.3 12.7 12.4 13.1 
NO. 19 20 21 22 23 
TIME : 34.1 36.2 34.5 37.6 39.7 
ACPT ; 11.4 12.1 11.5 12.5 13.2 

NO. 28 29 30 31 32 
TIME : 37.6 33.9 34.8 33.8 35.9 
ACPT : 12.5 11.3 11.6 11.3 12.0 
NO. 37 38 39 40 41 

TIME : 36.0 38.1 36.4 33.5 35.5 
ACPT : 12.0 12.7 12.1 11.2 11.8 
NO. 46 47 48 49 50 
TIME ; 35.4 37.5 35.8 34.8 36.9 
ACPT ; 11.8 12.5 11.9 11.6 12.3 
NO. 55 56 57 58 59 

TIME ; 32.5 34.6 32.9 32.0 31.4 
ACPT : 10.8 11.5 11.0 10.7 10.5 
NO. 64 65 66 67 68 
TIME : 32.0 31.4 31.2 30.6 27.7 
ACPT ; 10.7 10.5 7.8 7.7 6.9 
NO. 73 74 75 76 
TIME ; 33.8 35.6 34.6 13.5 
ACPT 8.4 11,9 11.5 4.5 

6 
36.0 
12.0 
15 
37.6 
12.5 
24 
38.0 
12;7 

33 
34.2 
11.4 
42 
33.9 
11.3 
51 
35.2 
11.7 
60 
29.7 
9.9 
69 
34.4 

8 . 6  

7 
35.0 
11.7 
16 
34.7 
11.6 
25 
37.0 
12.3 

34 
36.6 
12.2 
43 
32.8 
10.9 
52 
33.1 
11.0 
61 
29.1 
9.7 
70 
36.2 
12.1 

8 
37.1 
12.4 
17 
36.8 
12.3 

26 
39.1 
13.0 

35 
38.7 
12.9 
44 
34.9 
11.6 
53 
35.2 
11.7 
62 
33.0 
11.0 
71 
35.2 
11.7 

9 . 
35.4 
11.8 
18 
35.1 
11.7 
27 
34.2 
11.4 

36 
37.0 
12.3 
45 
33.3 
11.1 
54 
33.5 
11.2 
63 
32.4 
10.8 
72 
27.1 

6 . 8  
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Table 6.30: Effectivenesses of model C 

Cases Q reduced /à 's  * R T  
1 All Qs = I none 0.0152 70.3 
2 f j , ' s  on ] 0.0227 50.3 
3 ^^8'^31' A^33 0.0244 46.2 
4 Q s y s  =  3 none 0.0304 41.7 
5 Q 5 6(7 =3 0.0294 41.5 

6 •Î 0.0308 36.2 
7 0.0372 38^ 

8 0.0300 30.3 

9 Q;69='^ 0.0752 20.8 
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7 CONCLUSIONS AND DISCUSSIONS FOR FUTURE RESEARCH 

7.1 Conclusions 

In this thesis, a version of Stochastic Timed Place Petri Nets (STPPNs) capable 

of modeling a typical C'^ system, which operates asynchronously and concurrently, 

was developed. Also, in order to construct the STPPN having a well-formed struc­

ture, ill-formed situations of were identified and ways to resolve the situations nat­

urally were provided by making operation rules with non-restrictive assumptions. 

In addition, sufficient conditions for an STPPN to have a statistically meaningful 

long term behavior was analyzed. Modeling was performed for peace-time and war­

time. The latter model changes its structure in accordance with the result of the 

engagement against the opposite forces. 

Besides the modeling, a basic methodology to simulate and analyze underlying 

models was provided. By decomposing the STPPN to a circuit-free net, the rep­

resentative model state of the underlying STPPN was established, which is useful 

for finding the exact process execution order. This made it easier to formulate the 

relationships between processes belonging to the different slices. Also, the execution 

order was used to show the verification of the simulation program. 

The modeling addressed two types of constraints: time and structure. The 

time constraints are derived from the task processing times, whereas the structural 
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constraints characterizes the capacity of a system or the system itself. The 

capacity limitation corresponds to the limit of the human short-term memory in 

the case of the one-man process and the maximum number of people capable of 

being involved in a process. For the overall system, the capacity limitation was 

derived from the limited capacity of the system to store the information concurrently 

processed, which is determined by the model structure. In both cases, the capacity 

limitation bounds the amount of information that can be handled at the same time. 

Also, in a process, the capacity indicates the number of people assigned in order 

for them to perform the process. 

The maximum throughput rate is expressed as a function of the structural and 

time constraints in the following manner. The inclusion of the capacity in modeling 

the system results in simple directed circuits characterized by the circuit proc­

essing time, a('). a(') represents the average amount of time it takes for one input 

to complete the tasks of the circuit. The amount of capacity available, n, which 

bounds the total number of inputs can be processed concurrently in the circuit. 

Also, it indicates the total number of people involved in the circuit. For a given 

circuit, the ratio n/a{-) characterizes the average circuit processing rate . As shown 

in Chapter 5, the minimum average circuit processing rate determines the maxi­

mum throughput rate of the system. The determination of the critical circuits, for 

which the corresponding average processing rate is precisely minimal, is very useful 

for evaluating and comparing systems with different structures. In fact, the criti­

cal circuits characterize the particular time and structural constraints that actually 

bound the throughput rate. Therefore, the way with which the different constraints 

affect the effectiveness of the model can be completely specified. In particular, the 
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problem of modifying the right constraints to improve the effectiveness becomes 

clear. 

Simulation was performed for two models. One is the normal model (model 

N), which is designed with the system under the assumption that the system 

operates in peace time. The other is the model with structures changed (model C) 

according to the results of engagements against the opposite force. The processing 

times assigned to the task of each process were assumed to be exponentially dis­

tributed and the other inputs were assigned deterministically. For the main results 

of the simulation, the procedures to determine the most effective model structure 

was established. 

7.2 Discussions for Future Research 

7.2.1 Model design 

STPPN models dealt with in this thesis are Conflict-free models that a place 

in the net has only one input and one output transition. Also, the token quantity 

that each place can possess at a time is limited to one. This type of model has 

several advantages and disadvantages. Since the Conflict-free model has no distinc­

tion between tokens passed a place during its operations, i.e., this model operates 

under the assumption that all arriving information is identical, model states can be 

established very simply. Therefore, this type of model can be easily analyzed and 

no special operation rules are needed, which means operation rules are no different 

than the original Petri net. However, if the arriving information handled in a place 

is not identical, the tokens should be treated differently every time they enter the 
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place since the processing time of each place will have different processing time 

distributions. This represents the system more realistically than the previously one 

used in this thesis. However, the unique algorithm to assign the specific processing 

time distribution for the specific token to each place should be prepared. 

Meanwhile, since the model designed in this thesis has only one token at a time, 

the number of states required in order to represent the model is relatively small, 

compared the model which has more than one token in a place at a time. Also, 

its reachability can be easily proven by the structural analysis. The latter model, 

called Colored Petri Net (CPN), has been researched by Diaz [17]. The CPN is 

based on the introduction of colored tokens which represent different information 

or different tasks in a place. Therefore, this formalism can express the system more 

realistically, but several problems remain to be solved. For example, the restriction 

for the maximum number of tokens capable of staying simultaneously in a place, 

the need of the transition firing algorithm in order to release a specific token from 

a place, and the difficulty of the reachability proof due to increasing the complexity 

of the system states should be solved. 

7.2.2 Model expansion 

As mentioned before, time is the most crucial factor of a system. Especially, 

if a battle system is in contact with its counterforce, the time factor affects directly 

on the system's survivability. Therefore, if the system is in the battle mode, emer­

gency situations such as no time to communicate by the normal route may happen 

during the battle. If the normal route is applied in such a case, then due to delayed 

reactions, the system may not perform its task successfully and may be destroyed 
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more rapidly by the counterforce. Therefore, the consideration of the emergency 

communication route which can reduce the system's reaction time for the enemy's 

threat is necessary. For example, if an emergency communication route is connected 

between IBGs and CMD, all information are reported from IBGs to the commander 

directly without passing through the intermediate reporting channel CIC. After the 

CMD selects its response for the information, its order is directly sent to the IBGs, 

thus, the system's reaction can be performed more rapidly, as compared to the 

system with only normal communication routes. Therefore, the STPPN designed 

in this thesis can be easily extended by placing emergency communication routes 

to the original net as shown in Figure 7.1. The problem of how many routes are 

placed is strongly related to the cost required by adding extra routes and depends 

upon the tactics taken as the course of action when the system operates. 

7.2.3 Model applications 

The STPPN model designed in this thesis can be used in many areas, not only 

in combat organizations, but also civil organizations such as manufacturing systems, 

business organizations, if they can be represented as a hierarchical structure. Also, 

the model can be used for designing a new system by comparing changes of the 

system's effectiveness, according to the changes of the component relations such 

as the communication route, as well as finding out the specific system component 

which causes the delay of the system operation. An another way to apply this model 

is to determine the trade-off between the effectiveness level and the cost. 
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CMD 

TA AR RS 

CIC 
RS TA AR 

BG 

EG TA RS AR 

SBG 
RS AR. 

IBG 

EG 
RS AR 

Figure f.l: Example of model with emergency communication routes 
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9 APPENDIX A: ALGORITHM TO OBTAIN ALL SIMPLE 

DIRECT CIRCUITS OF A PETRI NET 

This appendix presents the algorithm that has been used to obtain all simple 

direct circuits of a Petri net. As discussed in Chapters 4 and 5, it is necessary to 

determine all circuits of the net, so as not only to transform it into a corresponding 

unfolded Petri net, but also to compute measures of effectiveness of the net such as 

the average cycle time of processes. The algorithm described here was developed by 

Alaiwan and Toudic [2] and was proven by Martinez and Silva [44]. This algorithm 

determines all the minimal support S-invariants of the net, which correspond to all 

its simple direct circuits. 

Next, Alaiwan and Toudic's algorithm is described and illustrated how it works 

through a simple example. 

9.1 Alaiwan and Toudic's Algorithm to Obtain all the Minimal 

Support S-invariants of a Petri Net 

In the following description, C  is denotes the incidence matrix of the Petri 

net, with dimensions nxm, where n is the number of places and m the number of 

transitions. Cjj denotes, the element corresponding to the ith row and the jth 

column of C, and In denotes the nxn identity matrix. 
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9.1.1 Algorithm for finding simple directed circuits 

Step 1: A  =  C  \  D  —  I n -  (Initialization) 

Step 2: Repeat for j  = m .  (Main Loop) 

Step 2.1: Determine the sets 5"^ and S2 such that 

*^1 = {n I > 0} and 52 = {z2 I ^"2; < o} . 

Step 2.2: For all pairs (ij, «2)^ 6 SixS2, 

Step 2.2.1: Append to the matrix A the row vector: 

* (z2th row of .4) — * (ijth row of .4) . 

Step 2.2.2: Append to the matrix D the row vector: 

.4^^^ * ((2th row of D )  —  A i ^ j  *  (qth row of D )  .  

Step 2.3: Eliminate from A  and D  all the rows with index i  C 5^ U 52-

Step 2.4: Eliminate from D  all the rows whose supports are non-minimal with 

respect to the other rows of D. If two rows have the same support, eliminate one 

of them. 

Step 2.5: Eliminate from .4 the rows corresponding to the rows ehminated 

f r o m  D .  

Step 3: The rows of D  determine all the minimal supports of S-invariant s in the 

net. 

^In the algorithm, the set of elements, i  G {1, 2, • • •, n}, denotes the support 
of a n-positive integer vector, v such that the ;th component of r is non-null. If 
G = • • •, I'l} is a set of vectors, i € {1, 2, • • •, k} will be a vector whose 
support is minimal in 6-', if and only if there does not exist in G a non-null vector, 

such that its support is strictly included in the support of r,. 
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Let's make a brief comment on how the algorithm works. The underlying 

idea is to proceed in m steps by finding the minimal support 6"-invariant s of the 

W' net, i = 0, 1, • • •, m — 1, which results from the elimination of the transitions 

[i + !,•••, m). The matrix D is constructed so that at the zth iteration the row 

vectors of D are precisely the minimal support ^'-invariants of the net R}. Initially 

D = In, because corresponds to the net without transitions and therefore, each 

single place constitutes a minimal support invariant. Once the minimal support 5-

invariants of the net are obtained, those of the net are generated in the 

following manner: they are obviously invariants for the net i?'. They can be 

expressed as a positive linear combination of the minimal support ^'-invariants of 

, i.e., as the row of D. However, the invariants generated are not all minimal 

support 6"-invariant s and it is necessary to eliminate the ones that are by comparing 

their supports. 

9.2 Determination of Simple Direct Circuits for a Net 

It has been proved that the simple direct circuits of a net are minimal S-

components of the net. Note that an S-component is a subnet constructed as 

follows: 

- (1) the set of places Pg is the support of the corresponding minimal 

S-invariant. 

- (2) the set of transitions Ts is all the transitions of the Petri net 

connected to the places of Pg, i.e., 

" ̂p C P s  ^ • 



www.manaraa.com

195 

P I  

P 4  

^3 

P 3  

^ 2  

Figure 9.1: An example of simple petri net 

Once all the minimal support S-invariants of the net is obtained, using the algorithm 

of Alawain and Toudic ,2., the determination of the circuits becomes straightfor­

ward. i.e., for each minimal support, the unique output(or input) transition of each 

place of the support is determined and then the corresponding S-component. which 

is a circuit, is obtained immediately. 

9.3 Example 

Let introduce a simple example to show how the algorithm works (see Fig­

ure 9.1). From Figure 9.1. the incident matrix. C, can be obtained as follows: 

C  =  

1 1 
1 1  0  

1  -1  0 

0  1  -1  

-1  0 1  
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Let carry out the steps of the algorithm described previously. 

S t e p  1 :  I n i t i a l i z e  m a t r i c e s  A  a n d  D .  

- 1  1  0  "  •  1  0  0  0  
1  - 1  0  .  D  =  0  1  0  0  
0  1  - 1  

.  D  =  
0  0  1  0  

- 1  0  1  .  0  0  0  1  

Step 2: For j = 1, 

Step 2.1: 5]^ = {2}, 52 = {1, 4} . 

Therefore, append row 1 to row 2 and row 4 to row 2 and make it the last rows of 

t h e  c o r r e s p o n d i n g  m a t r i c e s ,  A  a n d  D .  

Step 2.2: Then, eliminate row 1, row 2, and row 4 in A  and D .  The resulting 

matrices are: 

^4 = 
0  1  - 1  

0 0 0 
0  - 1  1  

D  =  
0  0  1 0  
1 1 0  0  
0  1 0  1  

Step 2.3: Since the rows of D  are obviously minimal support, no elimination 

occurs at Steps 2.4 and 2.5. 

For j  =  2, 

Step 2.1: 5"^ = {1}, S2 = {2, 3}. 

Step 2.2 and 2.3: Append row 1 to row 3 and make it the last rows of the 

corresponding matrices .4 and D, Then, eliminate rows 1 and 3. Therefore, the 

resulting matrices are: 

.4 = 0 0 0 
0 0 0 

D  =  1 1 0  0  
0  1 1 1  
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Once again, the two rows of D  are minimal supports. Now the last iteration, 

corresponding to j = 3 is useless since the third column of A is already null. The 

two rows of D are therefore the minimal support S-invariants of the underlying net, 

which correspond to the set of places: P2} and {p2, Pg, p^}. The two simple 

direct circuits are immediately obtained: 

Circuit 1 = 

Circuit 2 = ^1P2^2P3^3P4^1 • 

As have been seen above, the algorithm works for the simple net. However, if 

the net contains a self-loop or non-trivial conflict set, the algorithm does not work: 

in the former case, a self-loop can not be presented in the incident matrix without 

changing its form and in the latter case, the common input place of the conflict set 

contains several ways to go, i.e., the place creates several supports which equal the 

number of transitions in conflict. However, the algorithm only creates one support. 

Therefore, if the net contains self-loops or non-trivial conflict sets, transform the 

net by adding dummy places and transitions with the extension rules [23] and then 

construct the incident matrix. Then, the algorithm will work nicely. 
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10 APPENDIX B: CHANGED STRUCTURES OF MODEL C 

The following figures represent the changes, according to the destruction of the 

combat units(C'^ processes), of STPPN models investigated with in this thesis. 
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Figure 10.1: Changed structure of model C due to destruction of CIC 
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